

1.1

1.2

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

5.1

6.1

Table	of	Contents
Introduction

About	the	authors

PSR-7	and	Diactoros
Specialized	Response	Implementations	in	Diactoros

Emitting	Responses	with	Diactoros

Tooling	and	Configuration
Migrating	to	Expressive	2.0

Expressive	tooling

Nested	Middleware	in	Expressive

Error	Handling	in	Expressive

Cookbook
Using	Configuration-Driven	Routes	in	Expressive

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

Caching	middleware

Middleware	authentication

Authorize	users	using	Middleware

Experimental	Features
REST	Representations	for	Expressive

Copyright
Copyright	note

2

3

Expressive	Cookbook
This	book	contains	a	collection	of	articles	on	Expressive ,	a	PSR-7 	microframework	for
building	middleware	applications	in	PHP.	It	collects	most	of	the	articles	on	PSR-7	and
Expressive	published	in	2017	by	Matthew	Weier	O'Phinney	and	Enrico	Zimuel	on	the	official
Zend	Framework	blog .

The	goal	of	this	book	is	to	guide	PHP	developers	in	the	usage	of	Expressive.	We	feel
middleware	is	an	elegant	way	to	write	web	applications	as	the	approach	allows	you	to	write
targeted,	single-purpose	code	for	interacting	with	an	HTTP	request	in	order	to	produce	an
HTTP	response.	Each	middleware	should	do	exactly	one	thing,	and	developers	should
model	complex	workflows	by	stacking	middleware.	In	this	book,	we	demonstrate	a	number
of	recipes	that	demonstrate	this,	and	our	goal	is	to	help	you,	the	developer,	gain	mastery	of
the	middleware	patterns.

We	think	that	PSR-7	and	middleware	represent	the	future	of	web	development	in	PHP,	from
small	to	complex	enterprise	projects.

Enjoy	your	reading,
Matthew	Weier	O'Phinney	and	Enrico	Zimuel
Rogue	Wave	Software,	Inc.

Links

.	https://docs.zendframework.com/zend-expressive/	↩

.	http://www.php-fig.org/psr/psr-7/	↩

.	https://framework.zend.com/blog	↩

1 2

3

1

2

3

Introduction

4

https://mwop.net/
https://www.zimuel.it/
https://www.roguewave.com/
https://docs.zendframework.com/zend-expressive/
http://www.php-fig.org/psr/psr-7/
https://framework.zend.com/blog

About	the	authors

Matthew	Weier	O'Phinney	is	a	Principal	Engineer	at	Rogue	Wave	Software,	and	project
lead	for	the	Zend	Framework,	Apigility,	and	Expressive	projects.	He’s	responsible	for
architecture,	planning,	and	community	engagement	for	each	project,	which	are	used	by
thousands	of	developers	worldwide,	and	shipped	in	projects	from	personal	websites	to
multinational	media	conglomerates,	and	everything	in	between.	When	not	in	front	of	a
computer,	you'll	find	him	with	his	family	and	dogs	on	the	plains	of	South	Dakota.

For	more	information:

https://mwop.net/
https://www.roguewave.com/

Enrico	Zimuel	has	been	a	software	developer	since	1996.	He	works	as	a	Senior	Software
Engineer	at	Rogue	Wave	Software	as	a	core	developer	of	the	Zend	Framework,	Apigility,
and	Expressive	projects.	He	is	a	former	Researcher	Programmer	for	the	Informatics	Institute

About	the	authors

5

https://mwop.net/
https://www.roguewave.com/

of	the	University	of	Amsterdam.	Enrico	speaks	regularly	at	conferences	and	events,
including	TEDx	and	international	PHP	conferences.	He	is	also	the	co-founder	of	the	PHP
User	Group	of	Torino	(Italy).

For	more	information:

https://www.zimuel.it/
https://www.roguewave.com/
TEDx	presentation:	https://www.youtube.com/watch?v=SienrLY40-w
PHP	User	Group	of	Torino:	http://torino.grusp.org/

About	the	authors

6

https://www.zimuel.it/
https://www.roguewave.com/
https://www.youtube.com/watch?v=SienrLY40-w
http://torino.grusp.org/

Specialized	Response	Implementations	in
Diactoros
By	Matthew	Weier	O'Phinney

When	writing	PSR-7 	middleware,	at	some	point	you'll	need	to	return	a	response.

Maybe	you'll	be	returning	an	empty	response,	indicating	something	along	the	lines	of
successful	deletion	of	a	resource.	Maybe	you	need	to	return	some	HTML,	or	JSON,	or	just
plain	text.	Maybe	you	need	to	indicate	a	redirect.

But	here's	the	problem:	a	generic	response	typically	has	a	very	generic	constructor.	Take,	for
example,		Zend\Diactoros\Response	:

public	function	__construct(

				$body	=	'php://memory',

				$status	=	200,

				array	$headers	=	[]

)

	$body		in	this	signature	allows	either	a		Psr\Http\Message\StreamInterface		instance,	a	PHP
resource,	or	a	string	identifying	a	PHP	stream.	This	means	that	it's	not	terribly	easy	to	create
even	a	simple	HTML	response!

To	be	fair,	there	are	good	reasons	for	a	generic	constructor:	it	allows	setting	the	initial
state	in	such	a	way	that	you'll	have	a	fully	populated	instance	immediately.	However,
the	means	for	doing	so,	in	order	to	be	generic,	leads	to	convoluted	code	for	most
consumers.

Fortunately,	Diactoros	provides	a	number	of	convenience	implementations	to	help	simplify
the	most	common	use	cases.

EmptyResponse
The	standard	response	from	an	API	for	a	successful	deletion	is	generally	a		204	No	Content	.
Sites	emitting	webhook	payloads	often	expect	a		202	Accepted		with	no	content.	Many	APIs
that	allow	creation	of	resources	will	return	a		201	Created	;	these	may	or	may	not	have
content,	depending	on	implementation,	with	some	being	empty,	but	returning	a		Location	
header	with	the	URI	of	the	newly	created	resource.

1

Specialized	Response	Implementations	in	Diactoros

7

https://mwop.net

Clearly,	in	such	cases,	if	you	don't	need	content,	why	would	you	be	bothered	to	create	a
stream?	To	answer	this,	we	have		Zend\Diactoros\Response\EmptyResponse	,	with	the	following
constructor:

public	function	__construct($status	=	204,	array	$headers	=	[])

So,	a		DELETE		endpoint	might	return	this	on	success:

return	new	EmptyResponse();

A	webhook	endpoint	might	do	this:

return	new	EmptyResponse(StatusCodeInterface::STATUS_ACCEPTED);

An	API	that	just	created	a	resource	might	do	the	following:

return	new	EmptyResponse(

				StatusCodeInterface::STATUS_CREATED,

				['Location'	=>	$resourceUri]

);

RedirectResponse
Redirects	are	common	within	web	applications.	We	may	want	to	redirect	a	user	to	a	login
page	if	they	are	not	currently	logged	in;	we	may	have	changed	where	some	of	our	content	is
located,	and	redirect	users	requesting	the	old	URIs;	etc.

	Zend\Diactoros\Response\RedirectResponse		provides	a	simple	way	to	create	and	return	a
response	indicating	an	HTTP	redirect.	The	signature	is:

public	function	__construct($uri,	$status	=	302,	array	$headers	=	[])

where		$uri		may	be	either	a	string	URI,	or	a		Psr\Http\Message\UriInterface		instance.	This
value	will	then	be	used	to	seed	a		Location		HTTP	header.

return	new	RedirectResponse('/login');

You'll	note	that	the		$status		defaults	to	302.	If	you	want	to	set	a	permanent	redirect,	pass
	301		for	that	argument:

Specialized	Response	Implementations	in	Diactoros

8

return	new	RedirectResponse('/archives',	301);

//	or,	using	fig/http-message-util:

return	new	RedirectResponse('/archives',	StatusCodeInterface::STATUS_PERMANENT_REDIREC

T);

Sometimes	you	may	want	to	set	an	header	as	well;	do	that	by	passing	the	third	argument,
an	array	of	headers	to	provide:

return	new	RedirectResponse(

				'/login',

				StatusCodeInterface::STATUS_TEMPORARY_REDIRECT,

				['X-ORIGINAL_URI'	=>		$uri->getPath()]

);

TextResponse
Sometimes	you	just	want	to	return	some	text,	whether	it's	plain	text,	XML,	YAML,	etc.	When
doing	that,	taking	the	extra	step	to	create	a	stream	feels	like	overhead:

$stream	=	new	Stream('php://temp',	'wb+');

$stream->write($content);

To	simplify	this,	we	offer		Zend\Diactoros\Response\TextResponse	,	with	the	following	signature:

public	function	__construct($text,	$status	=	200,	array	$headers	=	[])

By	default,	it	will	use	a		Content-Type		of		text/plain	,	which	means	you'll	often	need	to
supply	a		Content-Type		header	with	this	response.

Let's	return	some	plain	text:

return	new	TextResponse('Hello,	world!');

Now,	let's	try	returning	a	Problem	Details	XML	response:

return	new	TextResponse(

				$xmlPayload,

				StatusCodeInterface::STATUS_UNPROCESSABLE_ENTITY,

				['Content-Type'	=>	'application/problem+xml']

);

Specialized	Response	Implementations	in	Diactoros

9

If	you	have	some	textual	content,	this	is	the	response	for	you.

HtmlResponse
The	most	common	response	from	web	applications	is	HTML.	If	you're	returning	HTML,	even
the		TextResponse		may	seem	a	bit	much,	as	you're	forced	to	provide	the		Content-Type	
header.	To	answer	that,	we	provide		Zend\Diactoros\Response\HtmlResponse	,	which	is	exactly
the	same	as		TextResponse	,	but	with	a	default		Content-Type		header	specifying		text/html;
charset=utf-8		instead.

As	an	example:

return	new	HtmlResponse($renderer->render($template,	$view));

JsonResponse
For	web	APIs,	JSON	is	generally	the	lingua	franca.	Within	PHP,	this	generally	means
passing	an	array	or	object	to		json_encode()	,	and	supplying	a		Content-Type		header	of
	application/json		or		application/{type}+json	,	where		{type}		is	a	more	specific
mediatype.

Like	text	and	HTML,	you	likely	don't	want	to	do	this	manually	every	time:

$json	=	json_encode(

		$data,

		JSON_HEX_TAG	|	JSON_HEX_APOS	|	JSON_HEX_QUOT	|	JSON_UNESCAPED_SLASHES

);

$stream	=	new	Stream('php://temp',	'wb+');

$stream->write($json);

$response	=	new	Response(

				$stream,

				StatusCodeInterface::STATUS_OK,

				['Content-Type'	=>	'application/json']

);

To	simplify	this,	we	provide		Zend\Diactoros\Response\JsonResponse	,	with	the	following
constructor	signature:

Specialized	Response	Implementations	in	Diactoros

10

public	function	__construct(

				$data,

				$status	=	200,

				array	$headers	=	[],

				$encodingOptions	=	self::DEFAULT_JSON_FLAGS

)	{

where		$encodingOptions		defaults	to	the	flags	specified	in	the	previous	example.

This	means	our	most	common	use	case	now	becomes	this:

return	new	JsonResponse($data);

What	if	we	want	to	return	a	JSON-formatted	Problem	Details	response?

return	new	JsonResponse(

				$details,

				StatusCodeInterface::STATUS_UNPROCESSABLE_ENTITY,

				['Content-Type'	=>	'application/problem+json']

);

One	common	workflow	we've	seen	with	JSON	responses	is	that	developers	often	want	to
manipulate	them	on	the	way	out	through	middleware.	As	an	example,	they	may	want	to	add
additional		_links		elements	to	HAL	responses,	or	add	counts	for	collections.

Starting	in	version	1.5.0,	we	provide	a	few	extra	methods	on	this	particular	response	type:

public	function	getPayload()	:	mixed;

public	function	getEncodingOptions()	:	int;

public	function	withPayload(mixed	$data)	:	JsonResponse;

public	function	withEncodingOptions(int	$options)	:	JsonResponse;

Essentially,	what	happens	is	we	now	store	not	only	the	encoded		$data		internally,	but	the
raw	data;	this	allows	you	to	pull	it,	manipulate	it,	and	then	create	a	new	instance	with	the
updated	data.	Additionally,	we	allow	specifying	a	different	set	of	encoding	options	later;	this
can	be	useful,	for	instance,	for	adding	the		JSON_PRETTY_PRINT		flag	when	in	development.
When	the	options	are	changed,	the	new	instance	will	also	re-encode	the	existing	data.

First,	let's	look	at	altering	the	payload	on	the	way	out.	zend-expressive-hal	injects
	_total_items	,		_page	,	and		_page_count		properties,	and	you	may	want	to	remove	the
underscore	prefix	for	each	of	these:

Specialized	Response	Implementations	in	Diactoros

11

function	(ServerRequestInterface	$request,	DelegateInterface	$delegate)	:	ResponseInte

rface

{

				$response	=	$delegate->process($request);

				if	(!	$response	instanceof	JsonResponse)	{

								return	$response;

				}

				$payload	=	$response->getPayload();

				if	(!	isset($payload['_total_items']))	{

								return	$response;

				}

				$payload['total_items']	=	$payload['_total_items'];

				unset($payload['_total_items']);

				if	(isset($payload['_page']))	{

								$payload['page']	=	$payload['_page'];

								$payload['page_count']	=	$payload['_page_count'];

								unset($payload['_page'],	$payload['_page_count']);

				}

				return	$response->withPayload($payload);

}

Now,	let's	write	middleware	that	sets	the		JSON_PRETTY_PRINT		option	when	in	development
mode:

function	(

				ServerRequestInterface	$request,

				DelegateInterface	$delegate

)	:	ResponseInterface	use	($isDevelopmentMode)	{

				$response	=	$delegate->process($request);

				if	(!	$isDevelopmentMode	||	!	$response	instanceof	JsonResponse)	{

								return	$response;

				}

				$options	=	$response->getEncodingOptions();

				return	$response->withEncodingOptions($options	|	JSON_PRETTY_PRINT);

}

These	features	can	be	really	powerful	when	shaping	your	API!

Summary

Specialized	Response	Implementations	in	Diactoros

12

The	goal	of	PSR-7	is	to	provide	the	ability	to	standardize	on	interfaces	for	your	HTTP
interactions.	However,	at	some	point	you	need	to	choose	an	actual	implementation,	and	your
choice	will	often	be	shaped	by	the	features	offered,	particularly	if	they	provide	convenience
in	your	development	process.	Our	goal	with	these	various	custom	response	implementations
is	to	provide	convenience	to	developers,	allowing	them	to	focus	on	what	they	need	to	return,
not	how	to	return	it.

You	can	check	out	more	in	the	Diactoros	documentation .

Footnotes

.	http://www.php-fig.org/psr/psr-7/	↩

.	https://docs.zendframework.com/zend-diactoros	↩

2

1

2

Specialized	Response	Implementations	in	Diactoros

13

http://www.php-fig.org/psr/psr-7/
https://docs.zendframework.com/zend-diactoros

Emitting	Responses	with	Diactoros
By	Matthew	Weier	O'Phinney

When	writing	middleware-based	applications,	at	some	point	you	will	need	to	emit	your
response.

PSR-7 	defines	the	various	interfaces	related	to	HTTP	messages,	but	does	not	define	how
they	will	be	used.	Diactoros 	defines	several	utility	classes	for	these	purposes,	including	a
	ServerRequestFactory		for	generating	a		ServerRequest		instance	from	the	PHP	SAPI	in	use,
and	a	set	of	emitters,	for	emitting	responses	back	to	the	client.	In	this	post,	we'll	detail	the
purpose	of	emitters,	the	emitters	shipped	with	Diactoros,	and	some	strategies	for	emitting
content	to	your	users.

What	is	an	emitter?
In	vanilla	PHP	applications,	you	might	call	one	or	more	of	the	following	functions	in	order	to
provide	a	response	to	your	client:

	http_response_code()		for	emitting	the	HTTP	response	code	to	use;	this	must	be	called
before	any	output	is	emitted.
	header()		for	emitting	response	headers.	Like		http_response_code()	,	this	must	be
called	before	any	output	is	emitted.	It	may	be	called	multiple	times,	in	order	to	set
multiple	headers.
	echo()	,		printf()	,		var_dump()	,	and		var_export()		will	each	emit	output	to	the	current
output	buffer,	or,	if	none	is	present,	directly	to	the	client.

One	aspect	PSR-7	aims	to	resolve	is	the	ability	to	generate	a	response	piece-meal,
including	adding	content	and	headers	in	whatever	order	your	application	requires.	To
accomplish	this,	it	provides	a		ResponseInterface		with	which	your	application	interacts,	and
which	aggregates	the	response	status	code,	its	headers,	and	all	content.

Once	you	have	a	complete	response,	however,	you	need	to	emit	it.

Diactoros	provides	emitters	to	solve	this	problem.	Emitters	all	implement
	Zend\Diactoros\Response\EmitterInterface	:

1
2

Emitting	Responses	with	Diactoros

14

https://mwop.net

namespace	Zend\Diactoros\Response;

use	Psr\Http\Message\ResponseInterface;

interface	EmitterInterface

{

				/**

					*	Emit	a	response.

					*

					*	Emits	a	response,	including	status	line,	headers,	and	the	message	body,

					*	according	to	the	environment.

					*

					*	Implementations	of	this	method	may	be	written	in	such	a	way	as	to	have

					*	side	effects,	such	as	usage	of	header()	or	pushing	output	to	the

					*	output	buffer.

					*

					*	Implementations	MAY	raise	exceptions	if	they	are	unable	to	emit	the

					*	response;	e.g.,	if	headers	have	already	been	sent.

					*

					*	@param	ResponseInterface	$response

					*/

				public	function	emit(ResponseInterface	$response);

}

Diactoros	provides	two	emitter	implementations,	both	geared	towards	standard	PHP	SAPI
implementations:

	Zend\Diactoros\Emitter\SapiEmitter	

	Zend\Diactoros\Emitter\SapiStreamEmitter	

Internally,	they	operate	very	similarly:	they	emit	the	response	status	code,	all	headers,	and
the	response	body	content.	Prior	to	doing	so,	however,	they	check	for	the	following
conditions:

Headers	have	not	yet	been	sent.
If	any	output	buffers	exist,	no	content	is	present.

If	either	of	these	conditions	is	not	true,	the	emitters	raise	an	exception.	This	is	done	to
ensure	that	consistent	content	can	be	emitted;	mixing	PSR-7	and	global	output	leads	to
unexpected	and	inconsistent	results.	If	you	are	using	middleware,	use	things	like	the	error
log,	loggers,	etc.	if	you	want	to	debug,	instead	of	mixing	strategies.

Emitting	files

Emitting	Responses	with	Diactoros

15

As	noted	above,	one	of	the	two	emitters	is	the		SapiStreamEmitter	.	The	normal		SapiEmitter	
emits	the	response	body	at	once	via	a	single		echo		statement.	This	works	for	most	general
markup	and	JSON	payloads,	but	when	returning	files	(for	example,	when	providing	file
downloads	via	your	application),	this	strategy	can	quickly	exhaust	the	amount	of	memory
PHP	is	allowed	to	consume.

The		SapiStreamEmitter		is	designed	to	answer	the	problem	of	file	downloads.	It	emits	a
chunk	at	a	time	(8192	bytes	by	default).	While	this	can	mean	a	bit	more	performance
overhead	when	emitting	a	large	file,	as	you'll	have	more	method	calls,	it	also	leads	to
reduced	memory	overhead,	as	less	content	is	in	memory	at	any	given	time.

The		SapiStreamEmitter		has	another	important	feature,	however:	it	allows	sending	content
ranges.

Clients	can	opt-in	to	receiving	small	chunks	of	a	file	at	a	time.	While	this	means	more
network	calls,	it	can	also	help	prevent	corruption	of	large	files	by	allowing	the	client	to	re-try
failed	requests	in	order	to	stitch	together	the	full	file.	Doing	so	also	allows	providing	progress
status,	or	even	buffering	streaming	content.

When	requesting	content	ranges,	the	client	will	pass	a		Range		header:

Range:	bytes=1024-2047

It	is	up	to	the	server	then	to	detect	such	a	header	and	return	the	requested	range.	Servers
indicate	that	they	are	doing	so	by	responding	with	a		Content-Range		header	with	the	range	of
bytes	being	returned	and	the	total	number	of	bytes	possible;	the	response	body	then	only
contains	those	bytes.

Content-Range:	bytes=1024-2047/11576

As	an	example,	middleware	that	allows	returning	a	content	range	might	look	like	the
following:

Emitting	Responses	with	Diactoros

16

function	(ServerRequestInterface	$request,	DelegateInterface	$delegate)	:	ResponseInte

rface

{

				$stream	=	new	Stream('path/to/download/file',	'r');

				$response	=	new	Response($stream);

				$range	=	$request->getHeaderLine('range');

				if	(empty($range))	{

								return	$response;

				}

				$size		=	$body->getSize();

				$range	=	str_replace('=',	'	',	$range);

				$range	.=	'/'	.	$size;

				return	$response->withHeader('Content-Range',	$range);

}

You'll	likely	want	to	validate	that	the	range	is	within	the	size	of	the	file,	too!

The	above	code	emits	a		Content-Range		response	header	if	a		Range		header	is	in	the
request.	However,	how	do	we	ensure	only	that	range	of	bytes	is	emitted?

By	using	the		SapiStreamEmitter	!	This	emitter	will	detect	the		Content-Range		header	and	use
it	to	read	and	emit	only	the	bytes	specified	by	that	header;	no	extra	work	is	necessary!

Mixing	and	matching	emitters
The		SapiEmitter		is	perfect	for	content	generated	within	your	application	—	HTML,	JSON,
XML,	etc.	—	as	such	content	is	usually	of	reasonable	length,	and	will	not	exceed	normal
memory	and	resource	limits.

The		SapiStreamEmitter		is	ideal	for	returning	file	downloads,	but	can	lead	to	performance
overhead	when	emitting	standard	application	content.

How	can	you	mix	and	match	the	two?

Expressive	answers	this	question	by	providing		Zend\Expressive\Emitter\EmitterStack	.	The
class	acts	as	a	stack	(last	in,	first	out),	executing	each	emitter	composed	until	one	indicates
it	has	handled	the	response.

This	class	capitalizes	on	the	fact	that	the	return	value	of		EmitterInterface		is	undefined.
Emitters	that	return	a	boolean		false		indicate	they	were	unable	to	handle	the	response,
allowing	the		EmitterStack		to	move	to	the	next	emitter	in	the	stack.	The	first	emitter	to	return
a	non-	false		value	halts	execution.

Emitting	Responses	with	Diactoros

17

Both	the	emitters	defined	in	zend-diactoros	return		null		by	default.	So,	if	we	want	to	create
a	stack	that	first	tries		SapiStreamEmitter	,	and	then	defaults	to		SapiEmitter	,	we	could	do
the	following:

use	Psr\Http\Message\ResponseInterface;

use	Zend\Diactoros\Response\EmitterInterface;

use	Zend\Diactoros\Response\SapiEmitter;

use	Zend\Diactoros\Response\SapiStreamEmitter;

use	Zend\Expressive\Emitter\EmitterStack;

$emitterStack	=	new	EmitterStack();

$emitterStack->push(new	SapiEmitter());

$emitterStack->push(new	class	implements	EmitterInterface	{

				public	function	emit(ResponseInterface	$response)

				{

								$contentSize	=	$response->getBody()->getSize();

								if	(''	===	$response->getHeaderLine('content-range')

												&&	$contentSize	<	8192

)	{

												return	false;

								}

								$emitter	=	new	SapiStreamEmitter();

								return	$emitter->emit($response);

				}

});

The	above	will	execute	our	anonymous	class	as	the	first	emitter.	If	the	response	has	a
	Content-Range		header,	or	if	the	size	of	the	content	is	greater	than	8k,	it	will	use	the
	SapiStreamEmitter	;	otherwise,	it	returns		false	,	allowing	the	next	emitter	in	the	stack,
	SapiEmitter	,	to	execute.	Since	that	emitter	always	returns	null,	it	acts	as	a	default	emitter
implementation.

In	Expressive,	if	you	were	to	wrap	the	above	in	a	factory	that	returns	the		$emitterStack	,
and	assign	that	factory	to	the		Zend\Diactoros\Emitter\EmitterInterface		service,	then	the
above	stack	will	be	used	by		Zend\Expressive\Application		for	the	purpose	of	emitting	the
application	response!

Summary
Emitters	provide	you	the	ability	to	return	the	response	you	have	aggregated	in	your
application	to	the	client.	They	are	intended	to	have	side-effects:	sending	the	response	code,
response	headers,	and	body	content.	Different	emitters	can	use	different	strategies	when

Emitting	Responses	with	Diactoros

18

emitting	responses,	from	simply		echo	ing	content,	to	iterating	through	chunks	of	content	(as
the		SapiStreamEmitter		does).	Using	Expressive's		EmitterStack		can	provide	you	with	a	way
to	select	different	emitters	for	specific	response	criteria.

For	more	information:

Read	the	Diactoros	emitter	documentation:	https://docs.zendframework.com/zend-
diactoros/emitting-responses/
Read	the	Expressive	emitter	documentation:	https://docs.zendframework.com/zend-
expressive/features/emitters/

Footnotes

.	http://www.php-fig.org/psr/psr-7/	↩

.	https://docs.zendframework.org/zend-diactoros/	↩

1

2

Emitting	Responses	with	Diactoros

19

https://docs.zendframework.com/zend-diactoros/emitting-responses/
https://docs.zendframework.com/zend-expressive/features/emitters/
http://www.php-fig.org/psr/psr-7/
https://docs.zendframework.org/zend-diactoros/

Migrating	to	Expressive	2.0
by	Matthew	Weier	O'Phinney

Zend	Expressive	2	was	released	in	March	2017 .	A	new	major	version	implies	breaking
changes,	which	often	poses	a	problem	when	migrating.	That	said,	we	did	a	lot	of	work
behind	the	scenes	to	try	and	ensure	that	migrations	can	happen	without	too	much	effort,
including	providing	migration	tools	to	ease	the	transition.

In	this	tutorial,	we	will	detail	migrating	an	existing	Expressive	application	from	version	1	to
version	2.

How	we	tested	this

We	used	Adam	Culp's	expressive-blastoff 	repository	as	a	test-bed	for	this	tutorial,	and
you	can	follow	along	from	there	if	you	want,	by	checking	out	the	1.0	tag	of	that
repository:

$	git	clone	https://github.com/adamculp/expressive-blastoff

$	cd	expressive-blastoff

$	git	checkout	1.0

$	composer	install

We	have	also	successfully	migrated	a	number	of	other	applications,	including	the	Zend
Framework	website	itself,	using	essentially	the	same	approach.	As	is	the	case	with	any
such	tutorial,	your	own	experience	may	vary.

Updating	dependencies
First,	create	a	new	feature	branch	for	the	migration,	to	ensure	you	do	not	clobber	working
code.	If	you	are	using	git,	this	might	look	like	this:

$	git	checkout	-b	feature/expressive-2

If	you	have	not	yet	installed	dependencies,	we	recommend	doing	so:

$	composer	install

1

2

Migrating	to	Expressive	2.0

20

https://mwop.net/

Now,	we'll	update	dependencies	to	get	Expressive	2.	Doing	so	on	an	existing	project
requires	a	number	of	other	updates	as	well:

You	will	need	to	update	whichever	router	implementation	you	use,	as	we	have	released
new	major	versions	of	all	routers,	to	take	advantage	of	a	new	major	version	of	the	zend-
expressive-router		RouterInterface	.	You	can	pin	these	to	 	̂ 2.0	.

You	will	need	to	update	the	zend-expressive-helpers	package,	as	it	now	also	depends
on	the	new		RouterInterface		changes.	You	can	pin	this	to	 	̂ 3.0	.

You	will	need	to	update	your	template	renderer,	if	you	have	one	installed.	These
received	minor	version	bumps	in	order	to	add	compatibility	with	the	new	zend-
expressive-helpers	release;	however,	since	we'll	be	issuing	a		require		statement	to
upgrade	Expressive,	we	need	to	specify	the	new	template	renderer	version	as	well.
Constraints	for	the	supported	renderers	are:

	zendframework/zend-expressive-platesrenderer:^1.2	

	zendframework/zend-expressive-twigrenderer:^1.3	

	zendframework/zend-expressive-zendviewrenderer:^1.3	

As	an	example,	if	you	are	using	the	recommended	packages	zendframework/zend-
expressive-fastroute	and	zendframework/zend-expressive-platesrenderer,	you	will	update	to
Expressive	2.0	using	the	following	statement:

$	composer	update	--with-dependencies	"zendframework/zend-expressive:^2.0"	\

>	"zendframework/zend-expressive-fastroute:^2.0"	\

>	"zendframework/zend-expressive-helpers:^3.0"	\

>	"zendframework/zend-expressive-platesrenderer:^1.2"

At	this	point,	try	out	your	site.	In	many	cases,	it	should	continue	to	"just	work."

Common	errors

We	say	should	for	a	reason.	There	are	a	number	of	features	that	will	not	work,	but	were
not	commonly	used	by	end-users,	including	accessing	properties	on	the
request/response	decorators	that	Stratigility	1	shipped	(on	which	Expressive	1	was
based),	and	usage	of	Stratigility	1	"error	middleware"	(which	was	removed	in	the
version	2	releases).	While	these	were	documented,	many	users	were	not	aware	of	the
features	and/or	did	not	use	them.	If	you	did,	however,	you	will	notice	your	site	will	not
run	following	the	upgrade.	Don't	worry;	we	cover	tools	that	will	solve	these	issues	in	the
next	section!

Migrating	to	Expressive	2.0

21

Migration
At	this	point,	there's	a	few	more	steps	you	should	take	to	fully	migrate	your	application;	in
some	cases,	your	application	is	currently	broken,	and	will	require	these	changes	to	work	in
the	first	place!

We	provide	CLI	tooling	that	assists	in	these	migrations	via	the	package
zendframework/zend-expressive-tooling.	Add	this	as	a	development	requirement	to	your
application	now:

$	composer	require	--dev	--update-with-dependencies	zendframework/zend-expressive-tool

ing

(The		--update-with-dependencies		may	be	necessary	to	pick	up	newer	versions	of	zend-
stdlib	and	zend-code,	among	others.)

Expressive	1	was	based	on	Stratigility	1,	which	decorated	the	request	and	response	objects
with	wrappers	that	provide	access	to	the	original	incoming	request,	URI,	and	response.	With
Stratigility	2	and	Expressive	2,	these	decorators	have	been	removed;	however	access	to
these	artifacts	is	available	via	request	attributes.	As	such,	we	provide	a	tool	to	scan	for
usage	of	these	and	fix	them	when	possible.	Let's	invoke	it	now:

$./vendor/bin/expressive-migrate-original-messages	scan

(If	your	code	is	in	a	directory	other	than		src/	,	then	use	the		--help		switch	for	options	on
specifying	that	directory.)

Most	likely	the	tool	won't	find	anything.	In	some	cases,	it	will	find	something,	and	try	to
correct	it.	The	one	thing	it	cannot	correct	are	calls	to		getOriginalResponse()	;	in	such	cases,
the	tool	details	how	to	correct	those	problems,	and	in	what	files	they	occur.

Next,	we'll	scan	for	legacy	error	middleware.	This	was	middleware	defined	in	Stratigility	with
an	alternate	signature:

function	(

				$error,

				ServerRequestInterface	$request,

				ResponseInterface	$response,

				callable	$next

)	:	ResponseInterface

Such	middleware	was	invoked	by	calling		$next		with	a	third	argument:

Migrating	to	Expressive	2.0

22

$response	=	$next($request,	$response,	$error);

This	style	of	middleware	has	been	removed	from	Stratigility	2	and	Expressive	2,	and	will	not
work	at	all.	We	provide	another	tool	for	finding	both	error	middleware,	as	well	as	invocations
of	error	middleware:

$./vendor/bin/expressive-scan-for-error-middleware	scan

(If	your	code	is	in	a	directory	other	than		src/	,	then	use	the		--help		switch	for	options	on
specifying	that	directory.)

This	tool	does	not	change	any	code,	but	it	will	tell	you	files	that	contain	problems,	and	give
you	information	on	how	to	correct	the	issues.

Finally,	we'll	migrate	to	a	programmatic	pipeline.	In	Expressive	1,	the	skeleton	defined	the
pipeline	and	routes	via	configuration.	Many	users	have	indicated	that	using	the	Expressive
API	tends	to	be	easier	to	learn	and	understand	than	the	configuration;	additionally,	IDEs	and
static	analyzers	are	better	able	to	determine	if	programmatic	pipelines	and	routing	are
correct	than	configuration-driven	ones.

As	with	the	other	migration	tasks,	we	provide	a	tool	for	this:

$./vendor/bin/expressive-pipeline-from-config	generate

This	tool	loads	your	existing	configuration,	and	then	does	the	following:

Creates		config/autoload/programmatic-pipeline.global.php	,	which	contains	directives
to	tell	Expressive	to	ignore	configured	pipelines	and	routing,	and	defines	dependencies
for	new	error	handling	and	pipeline	middleware.
Creates		config/pipeline.php		with	your	application	middleware	pipeline.
Creates		config/routes.php		with	your	application	routing	definitions.
Updates		public/index.php		to	include	the	above	two	files	prior	to	calling		$app->run()	.

The	tool	will	also	tell	you	if	it	encounters	legacy	error	middleware	in	your	configuration;	if	it
does,	it	skips	adding	directives	to	compose	it	in	the	application	pipeline,	but	notifies	you	it	is
doing	so.	Be	aware	of	that,	if	you	depended	on	the	feature	previously;	in	most	cases,	if
you've	been	following	this	tutorial	step-by-step,	you've	already	eliminated	them.

At	this	point,	try	out	your	application	again!	If	all	went	well,	this	should	"just	work."

Bonus	steps!

Migrating	to	Expressive	2.0

23

While	the	above	will	get	your	application	migrated,	V2	of	the	skeleton	application	offers	three
additional	features	that	were	not	present	in	the	original	v1	releases:

self-invoking	function	in		public/index.php		in	order	to	prevent	global	variable
declarations.
ability	to	define	and/or	use	middleware	modules,	via	zend-config-aggregator.
development	mode.

Self-invoking	function

The	point	of	this	change	is	to	prevent	addition	of	variables	into	the		$GLOBAL		scope.	This	is
done	by	creating	a	self-invoking	function	around	the	directives	in		public/index.php		that
create	and	use	variables.

After	completing	the	earlier	steps,	you	should	have	lines	like	the	following	in	your
	public/index.php	:

/**	@var	\Interop\Container\ContainerInterface	$container	*/

$container	=	require	'config/container.php';

/**	@var	\Zend\Expressive\Application	$app	*/

$app	=	$container->get(\Zend\Expressive\Application::class);

require	'config/pipeline.php';

require	'config/routes.php';

$app->run();

We'll	create	a	self-invoking	function	around	them.	If	you	are	using	PHP	7+,	this	looks	like	the
following:

(function	()	{

		/**	@var	\Interop\Container\ContainerInterface	$container	*/

		$container	=	require	'config/container.php';

		/**	@var	\Zend\Expressive\Application	$app	*/

		$app	=	$container->get(\Zend\Expressive\Application::class);

		require	'config/pipeline.php';

		require	'config/routes.php';

		$app->run();

})();

If	you're	still	using	PHP	5.6,	you	need	to	use		call_user_func()	:

Migrating	to	Expressive	2.0

24

call_user_func(function	()	{

		/**	@var	\Interop\Container\ContainerInterface	$container	*/

		$container	=	require	'config/container.php';

		/**	@var	\Zend\Expressive\Application	$app	*/

		$app	=	$container->get(\Zend\Expressive\Application::class);

		require	'config/pipeline.php';

		require	'config/routes.php';

		$app->run();

});

zend-config-aggregator

zendframework/zend-config-aggregator	is	at	the	heart	of	the	modular	middleware	system .	It
works	as	follows:

Modules	are	just	libraries	or	packages	that	define	a		ConfigProvider		class.	These
classes	are	stateless	and	define	an		__invoke()		method	that	returns	an	array	of
configuration.
The		config/config.php		file	then	uses		Zend\ConfigAggregator\ConfigAggregator		to,	well,
aggregate	configuration	from	a	variety	of	sources,	including		ConfigProvider		classes,	as
well	as	other	specialized	providers	(e.g.,	PHP	file	provider	for	aggregating	PHP
configuration	files,	array	provider	for	supplying	hard-coded	array	configuration,	etc.).
This	package	provides	built-in	support	for	configuration	caching	as	well.

We	also	provide	a	Composer	plugin,	zend-component-installer,	that	works	with	configuration
files	that	utilize	the		ConfigAggregator	.	It	executes	during	install	operations,	and	checks	the
package	being	installed	for	configuration	indicating	it	provides	a		ConfigProvider	;	if	so,	it	will
then	prompt	you,	asking	if	you	want	to	add	it	to	your	configuration.	This	is	a	great	way	to
automate	addition	of	dependencies	and	module-specific	configuration	to	your	application!

To	get	started,	let's	add	zend-config-aggregator	to	our	application:

$	composer	require	zendframework/zend-config-aggregator

We'll	also	add	the		zend-component-installer	,	but	as	a	development	requirement	only:

$	composer	require	--dev	zendframework/zend-component-installer

(Note:	it	will	likely	already	have	been	installed	with	zend-expressive-tooling;	requiring	it	like
this,	however,	ensures	it	stays	present	if	you	decide	to	remove	that	package	later.)

To	update	your	application,	you	will	need	to	update	your		config/config.php		file.

3

Migrating	to	Expressive	2.0

25

If	you've	made	no	modifications	to	the	shipped	version,	it	will	look	like	the	following:

<?php

use	Zend\Stdlib\ArrayUtils;

use	Zend\Stdlib\Glob;

/**

	*	Configuration	files	are	loaded	in	a	specific	order.	First	``global.php``,	then	``*.

global.php``.

	*	then	``local.php``	and	finally	``*.local.php``.	This	way	local	settings	overwrite	g

lobal	settings.

	*

	*	The	configuration	can	be	cached.	This	can	be	done	by	setting	``config_cache_enabled

``	to	``true``.

	*

	*	Obviously,	if	you	use	closures	in	your	config	you	can't	cache	it.

	*/

$cachedConfigFile	=	'data/cache/app_config.php';

$config	=	[];

if	(is_file($cachedConfigFile))	{

				//	Try	to	load	the	cached	config

				$config	=	include	$cachedConfigFile;

}	else	{

				//	Load	configuration	from	autoload	path

				foreach	(Glob::glob('config/autoload/{{,*.}global,{,*.}local}.php',	Glob::GLOB_BRA

CE)	as	$file)	{

								$config	=	ArrayUtils::merge($config,	include	$file);

				}

				//	Cache	config	if	enabled

				if	(isset($config['config_cache_enabled'])	&&	$config['config_cache_enabled']	===	

true)	{

								file_put_contents($cachedConfigFile,	'<?php	return	'	.	var_export($config,	true

)	.	';');

				}

}

//	Return	an	ArrayObject	so	we	can	inject	the	config	as	a	service	in	Aura.Di

//	and	still	use	array	checks	like	``is_array``.

return	new	ArrayObject($config,	ArrayObject::ARRAY_AS_PROPS);

You	can	replace	it	directly	with	this,	then:

Migrating	to	Expressive	2.0

26

<?php

use	Zend\ConfigAggregator\ArrayProvider;

use	Zend\ConfigAggregator\ConfigAggregator;

use	Zend\ConfigAggregator\PhpFileProvider;

$cacheConfig	=	[

				'config_cache_path'	=>	'data/config-cache.php',

];

$aggregator	=	new	ConfigAggregator([

				new	ArrayProvider($cacheConfig),

				new	PhpFileProvider('config/autoload/{{,*.}global,{,*.}local}.php'),

],	$cacheConfig['config_cache_path']);

return	$aggregator->getMergedConfig();

If	you	want,	you	can	set	the		config_cache_path		to	match	the	one	from	your	previous
version;	this	should	only	be	necessary	if	you	have	tooling	already	in	place	for	cache	clearing,
however.

ZF	components

Any	Zend	Framework	component	that	provides	service	configuration	exposes	a
	ConfigProvider	.	This	means	that	if	you	add	these	to	your	application	after	making	the
above	changes,	they	will	expose	their	services	to	your	application	immediately	following
installation!

If	you've	installed	ZF	components	prior	to	this	change,	check	to	see	which	ones	expose
	ConfigProvider		classes	(you	can	look	for	a		ConfigProvider		under	their	namespace,	or
look	for	an		extra.zf.config-provider		declaration	in	their		composer.json).	If	you	find
any,	add	them	to	your		config/config.php		file;	using	the	fully	qualified	class	name	of	the
provider.	As	an	example:		\Zend\Db\ConfigProvider::class	.

Development	mode

We	have	been	using	zf-development-mode	with	zend-mvc	and	Apigility	applications	for	a
few	years	now,	and	feel	it	offers	an	elegant	solution	for	shipping	standard	development
configuration	for	use	with	your	team,	as	well	as	toggling	back	and	forth	between
development	and	production	configuration.	(That	said,		config/autoload/*.local.php		files
may	clearly	vary	in	your	development	environment	versus	your	production	environment,	so
this	is	not	entirely	fool-proof!)

Let's	add	it	to	our	application:

Migrating	to	Expressive	2.0

27

$	composer	require	--dev	zfcampus/zf-development-mode

Note	that	we're	adding	it	as	a	development	requirement;	chances	are,	you	do	not	want	to
accidentally	enable	it	in	production!

Next,	we	need	to	add	a	couple	files	to	our	tree.	The	first	we'll	add	is
	config/development.config.php.dist	,	with	the	following	contents:

<?php

/**

	*	File	required	to	allow	enablement	of	development	mode.

	*

	*	For	use	with	the	zf-development-mode	tool.

	*

	*	Usage:

	*		$	composer	development-disable

	*		$	composer	development-enable

	*		$	composer	development-status

	*

	*	DO	NOT	MODIFY	THIS	FILE.

	*

	*	Provide	your	own	development-mode	settings	by	editing	the	file

	*	`config/autoload/development.local.php.dist`.

	*

	*	Because	this	file	is	aggregated	last,	it	simply	ensures:

	*

	*	-	The	`debug`	flag	is	_enabled_.

	*	-	Configuration	caching	is	_disabled_.

	*/

use	Zend\ConfigAggregator\ConfigAggregator;

return	[

				'debug'	=>	true,

				ConfigAggregator::ENABLE_CACHE	=>	false,

];

Next,	we'll	add	a		config/autoload/development.local.php.dist	.	The	contents	of	this	one	will
vary	based	on	what	you	are	using	in	your	application.

If	you	are	not	using	Whoops	for	error	reporting,	start	with	this:

<?php

return	[

];

Migrating	to	Expressive	2.0

28

If	you	are,	this	is	a	chance	to	configure	that	correctly	for	your	newly	updated	application.
Create	the	file	with	these	contents:

<?php

use	Whoops\Handler\PrettyPageHandler;

use	Zend\Expressive\Container;

use	Zend\Expressive\Middleware\ErrorResponseGenerator;

use	Zend\Expressive\Whoops;

use	Zend\Expressive\WhoopsPageHandler;

return	[

				'dependencies'	=>	[

								'invokables'	=>	[

												WhoopsPageHandler::class	=>	PrettyPageHandler::class,

],

								'factories'	=>	[

												ErrorResponseGenerator::class	=>	Container\WhoopsErrorResponseGeneratorFac

tory::class,

												Whoops::class	=>	Container\WhoopsFactory::class,

],

],

				'whoops'	=>	[

								'json_exceptions'	=>	[

												'display'				=>	true,

												'show_trace'	=>	true,

												'ajax_only'		=>	true,

],

],

];

Next,	if	you	started	with	the	V1	skeleton	application,	you	will	likely	have	a	file	named
	config/autoload/errorhandler.local.php	,	and	it	will	have	similar	contents,	for	the	purpose	of
seeding	the	legacy	"final	handler"	system.	You	can	now	remove	that	file.

After	that's	done,	we	need	to	add	some	directives	so	that	git	will	ignore	the	non-dist	files.
Edit	the		.gitignore		file	in	your	project's	root	directory	to	add	the	following	entry:

config/development.config.php

The		config/autoload/.gitignore		file	should	already	have	a	rule	that	omits		*.local.php	.

Now	we	need	to	have	our	configuration	load	the	development	configuration	if	it's	present.
The	following	assumes	you	already	converted	your	application	to	use	zend-config-
aggregator.	Add	the	following	line	as	the	last	element	of	the	array	passed	when	instantiating
your		ConfigAggregator	:

Migrating	to	Expressive	2.0

29

				new	PhpFileProvider('config/development.config.php'),

If	the	file	is	missing,	that	provider	will	return	an	empty	array;	if	it's	present,	it	returns
whatever	configuration	the	file	returns.	By	making	it	the	last	element	merged,	we	can	do
things	like	override	configuration	caching,	and	force	debug	mode,	which	is	what	our
	config/development.config.php.dist		file	does!

Finally,	let's	add	some	convenience	scripts	to	composer.	Open	your		composer.json		file,	find
the		scripts		section,	and	add	the	following	to	it:

								"development-disable":	"zf-development-mode	disable",

								"development-enable":	"zf-development-mode	enable",

								"development-status":	"zf-development-mode	status",

Now	we	can	try	it	out!

Run:

$	composer	development-status

This	should	tell	you	that	development	mode	is	currently	disabled.

Next,	run:

$	composer	development-enable

This	will	enable	development	mode.

If	you	want	to	test	and	ensure	you're	in	development	mode,	edit	one	of	your	middleware	to
have	it	raise	an	exception,	and	see	what	happens!

Clean	up
If	your	application	is	working	correctly,	you	can	now	do	some	additional	cleanup.

Edit	your		config/autoload/middleware-pipeline.global.php		file	to	remove	the
	middleware_pipeline		key	and	its	contents.
Edit	your		config/autoload/routes.global.php		file	to	remove	the		routes		key	and	its
contents.
Search	for	any	references	to	a		FinalHandler		within	your	dependency	configuration,
and	remove	them.

Migrating	to	Expressive	2.0

30

At	this	point,	you	should	have	a	fully	working	Expressive	2	application!

Final	step:	Updating	your	middleware
Now	that	the	initial	migration	is	complete,	you	can	take	some	more	steps!

One	of	the	big	changes	is	that	Expressive	2	prefers	middleware	implementing	http-
interop/http-middleware's		MiddlewareInterface	.	This	requires	a	few	changes	to	your
middleware.

First,	let's	look	at	the	interfaces	defined	by	http-interop/http-middleware:

namespace	Interop\Http\ServerMiddleware;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

interface	MiddlewareInterface

{

				/**

					*	@return	ResponseInterface

					*/

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te);

}

interface	DelegateInterface

{

				/**

					*	@return	ResponseInterface

					*/

				public	function	process(ServerRequestInterface	$request);

}

The	first	interface	defines	middleware.	Unlike	Expressive	1,	http-interop	middleware	does
not	receive	a	response	instance.	There	are	a	variety	of	reasons	for	this,	but	Anthony	Ferrara
sums	them	up	best	in	a	blog	post	he	wrote	in	May	2016 .

Another	difference	is	that	instead	of	a		callable	$next		argument,	we	have	a
	DelegateInterface	$delegate	.	This	provides	better	type-safety,	and,	because	each	of	the
	MiddlewareInterface		and		DelegateInterface		define	the	same		process()		method,	ensures
that	implementations	of	middleware	and	delegates	are	discrete	and	do	not	mix	concerns.
Delegates	are	classes	that	can	process	a	request	if	the	current	middleware	cannot	fully	do
so.	Examples	might	include	middleware	that	will	inject	additional	response	headers,	or
middleware	that	only	acts	when	certain	request	criteria	are	present	(such	as	HTTP	caching
headers).

4

Migrating	to	Expressive	2.0

31

The	upshot	is	that	when	rewriting	your	middleware	to	use	the	new	interfaces,	you	need	to	do
several	things:

First,	import	the	http-interop	interfaces	into	your	class	file:

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

Second,	rename	the		__invoke()		method	to		process()	.

Third,	update	the	signature	of	your	new		process		method	to	be:

public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

Fourth,	look	for	calls	to		$next()	.	As	an	example,	the	following:

return	$next($request,	$response);

Becomes:

return	$delegate->process($request);

These	updates	will	vary	on	a	case-by-case	basis:	in	some	cases,	you	may	be	calling
methods	on	the	request	instance;	in	other	cases,	you	may	be	capturing	the	returned
response

Look	for	cases	where	you	were	using	the	passed		$response		instance,	and	eliminate
those.	You	may	do	so	as	follows:

Use	the	response	returned	by	calling		$delegate->process()		instead.
Create	a	new	concrete	response	instance	and	operate	on	it.
Compose	a	"response	prototype"	in	your	middleware	if	you	do	not	want	to	create	a
new	response	instance	directly,	and	operate	on	it.	Doing	so	will	require	that	you
update	any	factory	associated	with	the	middleware	class,	however.

As	an	example,	let's	look	at	a	simple	middleware	that	adds	a	response	header:

Migrating	to	Expressive	2.0

32

namespace	App\Middleware;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

class	TheClacksMiddleware

{

				public	function	__invoke(ServerRequestInterface	$request,	ResponseInterface	$respo

nse,	callable	$next)

				{

								$response	=	$next($request,	$response);

								return	$response->withHeader('X-Clacks-Overhead',	['GNU	Terry	Pratchett']);

				}

}

When	we	refactor	it	to	be	http-interop	middleware,	it	becomes:

namespace	App\Middleware;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

class	TheClacksMiddleware	implements	MiddlewareInterface

{

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								$response	=	$delegate->process($request);

								return	$response->withHeader('X-Clacks-Overhead',	['GNU	Terry	Pratchett']);

				}

}

Summary
Migration	consists	of:

Updating	dependencies.
Running	migration	scripts	provided	by	zendframework/zend-expressive-tooling.
Optionally	adding	a	self-invoking	function	around	code	creating	variables	in
	public/index.php	.
Optionally	updating	your	application	to	use	zendframework/zend-config-aggregator	for
configuration	aggregation.
Optionally	adding	zfcampus/zf-development-mode	integration	to	your	application.

Migrating	to	Expressive	2.0

33

Optionally	updating	your	middleware	to	implement	http-interop/http-middleware.

As	noted,	many	of	these	changes	are	optional.	Your	application	will	continue	to	run	without
them.	Updating	them	will	modernize	your	application,	however,	and	make	it	more	familiar	to
developers	familiar	with	the	Expressive	2	skeleton.

We	hope	this	guide	gets	you	successfully	migrated!	If	you	run	into	issues	not	covered	here,
please	let	us	know	via	an	issue	on	the	Expressive	repository .

Footnotes

.	https://framework.zend.com/blog/2017-03-07-expressive-2.html	↩

.	https://github.com/adamculp/expressive-blastoff	↩

.	https://docs.zendframework.com/zend-expressive/features/modular-applications/	↩

.	http://blog.ircmaxell.com/2016/05/all-about-middleware.html	↩

.	https://github.com/zendframework/zend-expressive/issues/new	↩

5

1

2

3

4

5

Migrating	to	Expressive	2.0

34

https://framework.zend.com/blog/2017-03-07-expressive-2.html
https://github.com/adamculp/expressive-blastoff
https://docs.zendframework.com/zend-expressive/features/modular-applications/
http://blog.ircmaxell.com/2016/05/all-about-middleware.html
https://github.com/zendframework/zend-expressive/issues/new

Develop	Expressive	Applications	Rapidly
Using	CLI	Tooling
by	Matthew	Weier	O'Phinney

First	impressions	matter,	particularly	when	you	start	using	a	new	framework.	As	such,	we're
striving	to	improve	your	first	tasks	with	Expressive.

With	the	2.0	release,	we	provided	several	migration	tools,	as	well	as	tooling	for	creating,
registering,	and	deregistering	middleware	modules.	Each	was	shipped	as	a	separate	script,
with	little	unification	between	them.

Today,	we've	pushed	a	unified	script,		expressive	,	which	provides	access	to	all	the	migration
tooling,	module	tooling,	and	new	tooling	to	help	you	create	http-interop	middleware.	Our
hope	is	to	make	your	first	few	minutes	with	Expressive	a	bit	easier,	so	you	can	start	writing
powerful	applications.

Getting	the	tooling
If	you	haven't	created	an	application	yet:

$	composer	create-project	zendframework/zend-expressive-skeleton

will	create	a	new	project	using	the	latest	2.0.2	release,	which	contains	the	new		expressive	
script.

If	you	are	already	using	Expressive	2,	you	can	get	the	latest	tooling	using	the	following,
regardless	of	whether	or	not	you've	previously	installed	it:

$	composer	require	--dev	"zendframework/zend-expressive-tooling:^0.4.1"

What	tooling	do	you	get?
The		expressive		script	has	three	general	categories	of	commands:

	migrate:*	:	these	are	intended	for	Expressive	1	users	who	are	migrating	to	Expressive
2.	We'll	ignore	these	for	now,	as	we	covered	them	in	the	previous	chapter.
	module:*		Create,	register,	and	deregister	Expressive	middleware	modules.

Expressive	tooling

35

https://mwop.net/

	middleware:*	:	Create	http-interop	middleware	class	files.

Create	your	first	module
For	purposes	of	illustration,	we'll	consider	that	you	want	to	create	an	API	for	listing	books.
You	anticipate	that	the	functionality	can	be	self-contained,	and	that	you	may	want	to
potentially	extract	it	later	to	re-use	elsewhere.	As	such,	you	have	a	good	case	for	creating	a
module .

Let's	get	started:

$./vendor/bin/expressive	module:create	BooksApi

The	above	does	the	following:

It	creates	a	directory	tree	for	a		BooksApi		module	under		src/BooksApi/	,	with	a	subtree
for	source	code,	and	another	for	templates.
It	creates	the	class		BooksApi\ConfigProvider		in	the	file
	src/BooksApi/src/ConfigProvider.php	

It	adds	a	PSR-4	autoloader	entry	for		BooksApi		in	your		composer.json	,	and	runs
	composer	dump-autoload		to	ensure	the	new	autoloader	rule	is	generated	within	your
application.
It	adds	an	entry	for	the	generated		BooksApi\ConfigProvider		to	your		config/config.php	
file.

At	this	point,	we	have	a	module	with	no	code!	Let's	rectify	that	situation!

Create	middleware
We	know	we	will	want	to	list	books,	so	we'll	create	middleware	for	that:

$./vendor/bin/expressive	middleware:create	"BooksApi\Action\ListBooksAction"

Use	quotes!

PHP's	namespace	separator	is	the	backslash,	which	is	typically	interpreted	as	an
escape	character	in	most	shells.	As	such,	use	double	or	single	quotes	around	the
middleware	name	to	ensure	it	is	passed	correctly	to	the	command!

1

Expressive	tooling

36

This	creates	the	class		BooksApi\Action\ListBooksAction		in	the	file
	src/BooksApi/src/Action/ListBooksAction.php	.	In	doing	so,	it	creates	the
	src/BooksApi/src/Action/		directory,	as	it	did	not	previously	exist!

The	class	file	contents	will	look	like	this:

namespace	BooksApi\Action;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Psr\Http\ServerRequestInterface;

class	ListBooksAction	implements	MiddlewareInterface

{

				/**

					*	{@inheritDoc}

					*/

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								//	$response	=	$delegate->process($request);

				}

}

At	this	point,	you're	ready	to	start	coding!

Future	direction
This	tooling	is	just	a	start;	we're	well	aware	that	developers	will	want	and	need	more	tooling
to	make	development	more	convenient.	As	such,	we	have	a	call	to	action:	please	open
issues 	to	request	more	commands	that	will	make	your	life	easier,	or	open	pull	requests	that
implement	the	tools	you	need.	If	you	are	unsure	how	to	do	so,	use	the	existing	code	to	get
an	idea	of	how	to	proceed,	or	ask	in	the	#expressive-contrib	Slack	channel .

Footnotes

.	https://docs.zendframework.com/zend-expressive/features/modular-applications/	↩

.	https://github.com/zendframework/zend-expressive-tooling/issues/new	↩

.	Get	an	invite	to	our	Slack	at	https://zendframework-slack.herokuapp.com	↩

2

3

1

2

3

Expressive	tooling

37

https://docs.zendframework.com/zend-expressive/features/modular-applications/
https://github.com/zendframework/zend-expressive-tooling/issues/new
https://zendframework-slack.herokuapp.com

Nested	Middleware	in	Expressive
by	Matthew	Weier	O'Phinney

A	major	reason	to	adopt	a	middleware	architecture	is	the	ability	to	create	custom	workflows
for	your	application.	Most	traditional	MVC	architectures	have	a	very	specific	workflow	the
request	follows.	While	this	is	often	customizable	via	event	listeners,	the	events	and	general
request	lifecycle	is	the	same	for	each	and	every	resource	the	application	serves.

With	middleware,	however,	you	can	define	your	own	workflow	by	composing	middleware.

Expressive	pipelines
In	Expressive,	we	call	the	workflow	the	application	pipeline,	and	you	create	it	by	piping
middleware	into	the	application.	As	an	example,	the	default	pipeline	installed	with	the
skeleton	application	looks	like	this:

//	In	config/pipeline.php:

use	Zend\Expressive\Helper\ServerUrlMiddleware;

use	Zend\Expressive\Helper\UrlHelperMiddleware;

use	Zend\Expressive\Middleware\ImplicitHeadMiddleware;

use	Zend\Expressive\Middleware\ImplicitOptionsMiddleware;

use	Zend\Expressive\Middleware\NotFoundHandler;

use	Zend\Stratigility\Middleware\ErrorHandler;

$app->pipe(ErrorHandler::class);

$app->pipe(ServerUrlMiddleware::class);

$app->pipeRoutingMiddleware();

$app->pipe(ImplicitHeadMiddleware::class);

$app->pipe(ImplicitOptionsMiddleware::class);

$app->pipe(UrlHelperMiddleware::class);

$app->pipeDispatchMiddleware();

$app->pipe(NotFoundHandler::class);

In	this	particular	workflow,	what	happens	when	a	request	is	processed	is	the	following:

The		ErrorHandler		middleware	(which	handles	exceptions	and	PHP	errors)	is
processed,	which	in	turn:

processes	the		ServerUrlMiddleware		(which	injects	the	request	URI	into	the
	ServerUrl		helper),	which	in	turn:

process	the	routing	middleware,	which	in	turn:
process	the		ImplicitHeadMiddleware		(which	provides	responses	for		HEAD	

Nested	Middleware	in	Expressive

38

https://mwop.net/

requests	if	the	matched	middleware	does	not	handle	that	method),	which
in	turn:

processes	the		ImplicitOptionsMiddleware		(which	provides	responses
for		OPTIONS		requests	if	the	matched	middleware	does	not	handle	that
method),	which	in	turn:

processes	the		UrlHelperMiddleware		(which	injects	the
	UrlHelper		with	the		RouteResult		from	routing,	if	discovered),
which	in	turn:

processes	the	dispatch	middleware,	which	in	turn:
processes	the	matched	middleware,	if	present
processes	the		NotFoundHandler	,	if	no	middleware	was
matched	by	routing,	or	that	middleware	cannot	handle
the	request.

At	any	point	in	the	workflow,	middleware	can	choose	to	return	a	response.	For	instance,	the
	ImplicitHeadMiddleware		and		ImplicitOptionsMiddleware		may	return	a	response	if	the
middleware	matched	by	routing	cannot	handle	the	specified	method.	When	they	do,	no
layers	below	are	executed!

Scenario:	Adding	Authentication
Now,	let's	say	we	want	to	add	authentication	to	our	application.

For	purposes	of	this	example,	we'll	use	the		BasicAuthentication		middleware 	from	the
middlewares/http-authentication	package :

$	composer	require	middlewares/http-authentication

When	this	middleware	executes,	it	looks	at	the	various	HTTP	request	headers	used	for
HTTP	Basic	Authentication,	and	then	attempts	to	verify	the	credentials	against	a	list
composed	in	the	instance.	If	login	fails,	the	middleware	returns	a	401	response;	otherwise,	it
delegates	to	the	next	middleware.

The	middleware	accepts	a	list	of	username/password	pairs	to	its	constructor.	It	also	allows
you	to	provide	an	authentication	realm	via	the		realm()		method,	and	the	attribute	to	which	to
save	the	name	of	the	authenticated	user	within	the	request	used	to	dispatch	the	next
middleware	when	authentication	succeeds.	We'll	create	a	factory	to	configure	the
middleware:

1
2

Nested	Middleware	in	Expressive

39

<?php

namespace	Acme;

use	Middlewares\BasicAuthentication

use	Psr\Container\ContainerInterface;

class	BasicAuthenticationFactory

{

				/**

					*	@return	BasicAuthentication

					*/

				public	function	__invoke(ContainerInterface	$container)

				{

								$config	=	$container->has('config')	?	$container->get('config')	:	[];

								$credentials	=	$config['authentication']['credentials']	??	[];

								$realm	=	$config['authentication']['realm']	??	__NAMESPACE__;

								$attribute	=	$config['authentication']['attribute']

												??		BasicAuthentication::class;

								$middleware	=	new	BasicAuthentication($credentials);

								$middleware->realm($realm);

								$middleware->attribute($attribute);

								return	$middleware;

				}

}

Wire	this	in	your	dependencies	somewhere;	we	recommend	either	the	file
	config/autoload/dependencies.global.php		or	the	class		Acme\ConfigProvider		if	you	have
defined	it:

'dependencies'	=>	[

				'factories'	=>	[

								Middlewares\BasicAuthentication::class	=>	Acme\BasicAuthenticationFactory::cla

ss,

],

],

Now,	we'll	add	this	to	the	pipeline.

If	you	want	every	request	to	require	authentication,	you	can	pipe	this	in	early,	sometime	after
the		ErrorHandler		and	any	middleware	you	want	to	run	for	every	request:

//	In	config/pipeline.php:

$app->pipe(ErrorHandler::class);

$app->pipe(ServerUrlMiddleware::class);

$app->pipe(\Middlewares\BasicAuthentication::class);

Nested	Middleware	in	Expressive

40

Done!

But...	this	means	that	all	pages	of	the	application	now	require	authentication!	You	likely	don't
want	to	require	authentication	for	the	home	page,	and	potentially	many	others.

Let's	look	at	some	options.

Segregating	by	path
One	option	available	in	Expressive	is	path	segregation.	If	you	know	every	route	requiring
authentication	will	have	the	same	path	prefix,	you	can	use	this	approach.

As	an	example,	let's	say	you	only	want	authentication	for	your	API,	and	all	API	paths	fall
under	the	path	prefix		/api	.	This	means	you	could	do	the	following:

$app->pipe('/api',	\Middlewares\BasicAuthentication::class);

This	middleware	will	only	execute	if	the	request	path	matches		/api	.

But	what	if	you	only	really	need	authentication	for	specific	routes	under	the	API?

Nested	middleware
We	finally	get	to	the	purpose	of	this	tutorial!

Let's	say	our	API	defines	the	following	routes:

//	In	config/routes.php:

$app->get('/api/books',	Acme\Api\BookListMiddleware::class,	'api.books');

$app->post('/api/books',	Acme\Api\CreateBookMiddleware::class);

$app->get('/api/books/{book_id:\d+}',	Acme\Api\BookMiddleware::class,	'api.book');

$app->patch('/api/books/{book_id:\d+}',	Acme\Api\UpdateBookMiddleware::class);

$app->delete('/api/books/{book_id:\d+}',	Acme\Api\DeleteBookMiddleware::class);

In	this	scenario,	we	want	to	require	authentication	only	for	the		CreateBookMiddleware	,
	UpdateBookMiddleware	,	and		DeleteBookMiddleware	.	How	do	we	do	that?

Expressive	allows	you	to	provide	a	list	of	middleware	both	when	piping	and	routing,	instead
of	a	single	middleware.	Just	as	when	you	specify	a	single	middleware,	each	entry	may	be
one	of:

callable	middleware

Nested	Middleware	in	Expressive

41

middleware	instance
service	name	resolving	to	middleware

Internally,	Expressive	creates	a		Zend\Stratigility\MiddlewarePipe		instance	with	the
specified	middleware,	and	processes	this	pipeline	when	the	given	middleware	is	matched.

So,	going	back	to	our	previous	example,	where	we	defined	routes,	we	can	rewrite	them	as
follows:

//	In	config/routes.php:

$app->get('/api/books',	Acme\Api\BookListMiddleware::class,	'api.books');

$app->post('/api/books',	[

				Middlewares\BasicAuthentication::class,

				Acme\Api\CreateBookMiddleware::class,

]);

$app->get('/api/books/{book_id:\d+}',	Acme\Api\BookMiddleware::class,	'api.book');

$app->patch('/api/books/{book_id:\d+}',	[

				Middlewares\BasicAuthentication::class,

				Acme\Api\UpdateBookMiddleware::class,

]);

$app->delete('/api/books/{book_id:\d+}',	[

				Middlewares\BasicAuthentication::class,

				Acme\Api\DeleteBookMiddleware::class,

]);

In	this	particular	case,	this	means	that	the		BasicAuthentication		middleware	will	only
execute	for	one	of	the	following:

	POST		requests	to		/api/books	
	PATCH		requests	to		/api/books/123		(or	any	valid	identifier)
	DELETE		requests	to		/api/books/123		(or	any	valid	identifier)

In	each	case,	if	authentication	fails,	the	later	middleware	in	the	list	will	not	be	processed,	as
the		BasicAuthentication		middleware	will	return	a	401	response.

This	technique	allows	for	some	powerful	workflows.	For	instance,	when	creating	a	book	via
the		/api/books		middleware,	we	could	also	add	in	middleware	to	check	the	content	type,
parse	the	incoming	request,	and	validate	the	submitted	data:

Nested	Middleware	in	Expressive

42

//	In	config/routes.php:

$app->post('/api/books',	[

				Middlewares\BasicAuthentication::class,

				Acme\ContentNegotiationMiddleware::class,

				Zend\Expressive\Helper\BodyParams\BodyParamsMiddleware::class,

				Acme\Api\BookValidationMiddleware::class,

				Acme\Api\CreateBookMiddleware::class,

]);

(We	leave	implementation	of	most	of	the	above	middleware	as	an	exercise	for	the	reader!)

By	using	service	names,	you	also	ensure	that	optimal	performance;	the	middleware	will	not
be	instantiated	unless	the	request	matches,	and	the	middleware	is	executed.	In	fact,	if	one
of	the	pipeline	middleware	for	the	given	route	returns	a	response	early,	even	the	middleware
later	in	the	queue	will	not	be	instantiated!

A	note	about	order

When	you	create	middleware	pipelines	such	as	the	above,	as	well	as	in	the	following
examples,	order	matters.	Pipelines	are	managed	internally	as	queues,	and	thus	are
first-in-first-out	(FIFO).	As	such,	putting	the	responding		CreateBookMiddleware		(which
will	most	likely	return	a	response	with	the	API	payload)	will	result	in	the	other
middleware	never	executing!

As	such,	ensure	that	your	pipelines	contain	middleware	that	will	delegate	first,	and	your
primary	middleware	that	returns	a	response	last.

Middleware	pipelines
Another	approach	would	be	to	setup	a	middleware	pipeline	manually	within	the	factory	for
the	requested	middleware.	The	following	examples	creates	and	returns	a
	Zend\Stratigility\MiddlewarePipe		instance	that	composes	the	same	middleware	as	in	the
previous	example	that	used	a	list	of	middleware	when	routing,	returning	the		MiddlewarePipe	
instead	of	the	requested		CreateBookMiddleware		(but	composing	it	nonetheless):

Nested	Middleware	in	Expressive

43

namespace	Acme\Api;

use	Acme\ContentNegotiationMiddleware;

use	Middlewares\BasicAuthentication;

use	Psr\Container\ContainerInterface;

use	Zend\Expressive\Helper\BodyParams\BodyParamsMiddleware;

use	Zend\Stratigility\MiddlewarePipe;

class	CreateBookMiddlewareFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$pipeline	=	new	MiddlewarePipe();

								$pipeline->pipe($container->get(BasicAuthentication::class));

								$pipeline->pipe($container->get(ContentValidationMiddleware::class));

								$pipeline->pipe($container->get(BodyParamsMiddleware::class));

								$pipeline->pipe($container->get(BookValidationMiddleware::class));

								//	If	dependencies	are	needed,	pull	them	from	the	container	and	pass

								//	them	to	the	constructor:

								$nested->pipe(new	CreateBookMiddleware());

								return	$pipeline;

				}

}

This	approach	is	inferior	to	using	an	array	of	middleware,	however.	Internally,	Expressive	will
wrap	the	various	middleware	services	you	list	in		LazyLoadingMiddleware		instances;	this
means	that	if	a	service	earlier	in	the	pipeline	returns	early,	the	service	will	never	be	pulled
from	the	container.	This	can	be	important	if	any	services	might	establish	network
connections	or	perform	file	operations	during	initialization!

Nested	applications
Since	Expressive	does	the	work	of	lazy	loading	services,	another	option	would	be	to	create
another	Expressive		Application		instance,	and	feed	it,	instead	of	creating	a
	MiddlewarePipe	:

Nested	Middleware	in	Expressive

44

namespace	Acme\Api;

use	Acme\ContentNegotiationMiddleware;

use	Middlewares\BasicAuthentication;

use	Psr\Container\ContainerInterface;

use	Zend\Expressive\Application;

use	Zend\Expressive\Helper\BodyParams\BodyParamsMiddleware;

use	Zend\Expressive\Router\RouterInterface;

class	CreateBookMiddlewareFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$nested	=	new	Application(

										$container->get(RouterInterface::class),

										$container

);

								$nested->pipe(BasicAuthentication::class);

								$nested->pipe(ContentValidationMiddleware::class);

								$nested->pipe(BodyParamsMiddleware::class);

								$nested->pipe(BookValidationMiddleware::class);

								//	If	dependencies	are	needed,	pull	them	from	the	container	and	pass

								//	them	to	the	constructor:

								$nested->pipe(new	CreateBookMiddleware());

								return	$nested;

				}

}

The	benefit	this	approach	has	is	that	you	get	the	lazy-loading	middleware	instances	without
effort.	However,	it	makes	discovery	of	what	the	middleware	consists	more	difficult	—	you
can't	just	look	at	the	routes	anymore,	but	need	to	look	at	the	factory	itself	to	see	what	the
workflow	looks	like.	When	you	consider	re-distribution	and	re-use,	though,	this	approach	has
a	lot	to	offer,	as	it	combines	the	performance	of	defining	an	application	pipeline	with	the
ability	to	re-use	that	same	workflow	any	time	you	use	that	particular	middleware	in	an
application.

(The	above	could	even	use	separate	router	and	container	instances	entirely,	in	order	to	keep
the	services	and	routing	for	the	middleware	pipeline	completely	separate	from	those	of	the
main	application!)

Using	traits	for	common	workflows

Nested	Middleware	in	Expressive

45

The	above	approach	of	creating	a	nested	application,	as	well	as	the	original	example	of
nested	middleware	provided	via	arrays,	has	one	drawback:	if	several	middleware	need	the
exact	same	workflow,	you'll	have	repetition.

One	approach	is	to	create	a	trait 	for	creating	the		Application		instance	and	populating	the
initial	pipeline.

namespace	Acme\Api;

use	Acme\ContentNegotiationMiddleware;

use	Middlewares\BasicAuthentication;

use	Psr\Container\ContainerInterface;

use	Zend\Expressive\Application;

use	Zend\Expressive\Helper\BodyParams\BodyParamsMiddleware;

use	Zend\Expressive\Router\RouterInterface;

trait	CommonApiPipelineTrait

{

				private	function	createNestedApplication(ContainerInterface	$container)

				{

								$nested	=	new	Application(

										$container->get(RouterInterface::class),

										$container

);

								$nested->pipe(BasicAuthentication::class);

								$nested->pipe(ContentValidationMiddleware::class);

								$nested->pipe(BodyParamsMiddleware::class);

								$nested->pipe(BookValidationMiddleware::class);

								return	$nested;

				}

}

Our		CreateBookMiddlewareFactory		then	becomes:

3

Nested	Middleware	in	Expressive

46

namespace	Acme\Api;

use	Psr\Container\ContainerInterface;

class	CreateBookMiddlewareFactory

{

				use	CommonApiPipelineTrait;

				public	function	__invoke(ContainerInterface	$container)

				{

								$nested	=	$this->createNestedApplication($container);

								//	If	dependencies	are	needed,	pull	them	from	the	container	and	pass

								//	them	to	the	constructor:

								$nested->pipe(new	CreateBookMiddleware());

								return	$nested;

				}

}

Any	middleware	that	would	need	the	same	workflow	can	now	provide	a	factory	that	uses	the
same	trait.	This,	of	course,	means	that	the	factories	for	any	given	middleware	that	adopts
the	specific	workflow	reflect	that,	meaning	they	cannot	e	re-used	without	using	that	specific
workflow.

Delegator	factories
To	solve	this	latter	problem	—	allowing	re-use	of	middleware	without	requiring	the	specific
pipeline	—	we	provide	another	approach:	delegator	factories .

Available	since	version	2	of	the	Expressive	skeleton,	delegator	factories	intercept	creation	of
a	service,	and	allow	you	to	act	on	the	service	before	returning	it,	or	replace	it	with	another
instance	entirely!

The	above	trait	could	be	rewritten	as	a	delegator	factory:

4

Nested	Middleware	in	Expressive

47

namespace	Acme\Api;

use	Middlewares\BasicAuthentication;

use	Acme\ContentNegotiationMiddleware;

use	Psr\Container\ContainerInterface;

use	Zend\Expressive\Application;

use	Zend\Expressive\Helper\BodyParams\BodyParamsMiddleware;

use	Zend\Expressive\Router\RouterInterface;

class	CommonApiPipelineDelegatorFactory

{

				public	function	__invoke(ContainerInterface	$container,	$name,	callable	$callback)

				{

								$nested	=	new	Application(

										$container->get(RouterInterface::class),

										$container

);

								$nested->pipe(BasicAuthentication::class);

								$nested->pipe(ContentValidationMiddleware::class);

								$nested->pipe(BodyParamsMiddleware::class);

								$nested->pipe(BookValidationMiddleware::class);

								//	Inject	the	middleware	service	requested:

								$nested->pipe($callback());

								return	$nested;

				}

}

You	could	then	register	this	with	any	service	that	needs	the	pipeline,	without	needing	to
change	their	factories.	As	an	example,	you	could	have	the	following	in	either	the
	config/autoload/dependencies.global.php		file	or	the		Acme\ConfigProvider		class,	if	defined:

Nested	Middleware	in	Expressive

48

'dependencies'	=>	[

				'factories'	=>	[

								\Acme\Api\CreateBookMiddleware::class	=>	\Acme\Api\CreateBookMiddlewareFactory

::class,

								\Acme\Api\DeleteBookMiddleware::class	=>	\Acme\Api\DeleteBookMiddlewareFactory

::class,

								\Acme\Api\UpdateBookMiddleware::class	=>	\Acme\Api\UpdateBookMiddlewareFactory

::class,

],

				'delegators'	=>	[

								\Acme\Api\CreateBookMiddleware::class	=>	[

												\Acme\Api\CommonApiPipelineDelegatorFactory::class,

],

								\Acme\Api\DeleteBookMiddleware::class	=>	[

												\Acme\Api\CommonApiPipelineDelegatorFactory::class,

],

								\Acme\Api\UpdateBookMiddleware::class	=>	[

												\Acme\Api\CommonApiPipelineDelegatorFactory::class,

],

],

],

This	approach	offers	re-usability	even	when	a	given	middleware	may	not	have	expected	to
be	used	in	a	specific	workflow!

Middleware	all	the	way	down!
We	hope	this	tutorial	demonstrates	the	power	and	flexibility	of	Expressive,	and	how	you	can
create	workflows	that	are	granular	even	to	specific	middleware.	We	covered	a	number	of
features	in	this	post:

Pipeline	middleware	that	operates	for	all	requests.
Path-segregated	middleware.
Middleware	nesting	via	lists	of	middleware.
Returning	pipelines	or	applications	from	individual	service	factories.
Using	delegator	factories	to	create	and	return	nested	pipelines	or	applications.

Footnotes

.	https://github.com/middlewares/http-authentication#basicauthentication	↩

.	https://github.com/middlewares/http-authentication	↩

.	http://php.net/trait	↩

1

2

3

4

Nested	Middleware	in	Expressive

49

https://github.com/middlewares/http-authentication#basicauthentication
https://github.com/middlewares/http-authentication
http://php.net/trait

.	https://docs.zendframework.com/zend-expressive/features/container/delegator-
factories/	↩

4

Nested	Middleware	in	Expressive

50

https://docs.zendframework.com/zend-expressive/features/container/delegator-factories/

Error	Handling	in	Expressive
by	Matthew	Weier	O'Phinney

One	of	the	big	improvements	in	Expressive	2	is	how	error	handling	is	approached.	While	the
error	handling	documentation 	covers	the	feature	in	detail,	more	examples	are	never	a	bad
thing!

Our	scenario
For	our	example,	we'll	create	an	API	resource	that	returns	a	list	of	books	read.	Being	an	API,
we	want	to	return	JSON;	this	is	true	even	when	we	want	to	present	error	details.	Our
challenge,	then,	will	be	to	add	error	handling	that	presents	JSON	error	details	when	the	API
is	invoked	—	but	use	the	existing	error	handling	otherwise.

The	middleware
The	middleware	looks	like	the	following:

//	In	src/Acme/BooksRead/ListBooksRead.php:

namespace	Acme\BooksRead;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	PDO;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\JsonResponse;

class	ListBooksRead	implements	MiddlewareInterface

{

				const	SORT_ALLOWED	=	[

								'author',

								'date',

								'title',

];

				const	SORT_DIR_ALLOWED	=	[

								'ASC',

								'DESC',

];

				private	$pdo;

1

Error	Handling	in	Expressive

51

https://mwop.net/

				public	function	__construct(PDO	$pdo)

				{

								$this->pdo	=	$pdo;

				}

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								$query			=	$request->getQueryParams();

								$page				=	$this->validatePageOrPerPage((int)	($query['page']	??	1));

								$perPage	=	$this->validatePageOrPerPage((int)	($query['per_page']	??	25));

								$sort				=	$this->validateSort($query['sort']	??	'date');

								$sortDir	=	$this->validateSortDirection($query['sort_direction']	??	'DESC');

								$offset	=	($page	-	1)	*	$perPage;

								$statement	=	$pdo->prepare(sprintf(

												'SELECT	*	FROM	books_read	ORDER	BY	%s	%s	LIMIT	%d	OFFSET	%d',

												$sort,

												$sortDir,

												$perPage,

												$offset

));

								try	{

												$statement->execute([]);

								}	catch	(PDOException	$e)	{

												throw	Exception\ServerError::create(

																'Database	error	occurred',

																sprintf('A	database	error	occurred:	%s',	$e->getMessage()),

																['trace'	=>	$e->getTrace()]

);

								}

								$books	=	$statement->fetchAll(PDO::FETCH_ASSOC);

								return	new	JsonResponse(['books'	=>	$books]);

				}

				private	function	validatePageOrPerPage($value,	$param)

				{

								if	($value	>	1)	{

												return	$value;

								}

								throw	Exception\InvalidRequest::create(

												sprintf('Invalid	%s	value	specified',	$param),

												sprintf('The	%s	specified	must	be	an	integer	greater	than	1',	$param)

);

				}

				private	function	validateSort(string	$sort)

Error	Handling	in	Expressive

52

				{

								if	(in_array($sort,	self::SORT_ALLOWED,	true))	{

												return	$sort;

								}

								throw	Exception\InvalidRequest::create(

												'Invalid	sort	type	specified',

												sprintf(

																'The	sort	type	specified	must	be	one	of	[%s]',

																implode(',	',	self::SORT_ALLOWED)

)

);

				}

				private	function	validateSortDirection(string	$direction)

				{

								if	(in_array($direction,	self::SORT_DIR_ALLOWED,	true))	{

												return	$direction;

								}

								throw	Exception\InvalidRequest::create(

												'Invalid	sort	direction	specified',

												sprintf(

																'The	sort	direction	specified	must	be	one	of	[%s]',

																implode(',	',	self::SORT_DIR_ALLOWED)

)

);

				}

}

You'll	notice	that	this	middleware	throws	exceptions	for	error	handling,	and	uses	some
custom	exception	types.	Let's	examine	those	next.

The	exceptions

Our	API	will	have	custom	exceptions.	In	order	to	provide	useful	details	to	our	users,	we'll
have	our	exceptions	compose	additional	details	that	we	can	report.	As	such,	we'll	have	a
special	interface	for	our	API	exceptions	that	exposes	the	custom	details.

We'll	also	define	a	few	specific	types.	Since	much	of	the	work	will	be	the	same	between
these	types,	we'll	use	a	trait	to	define	the	common	code,	and	compose	that	into	each.

Error	Handling	in	Expressive

53

//	In	src/Acme/BooksRead/Exception/MiddlewareException.php:

namespace	Acme\BooksRead\Exception;

interface	MiddlewareException

{

				public	static	function	create()	:	MiddlewareException;

				public	function	getStatusCode()	:	int;

				public	function	getType()	:	string;

				public	function	getTitle()	:	string;

				public	function	getDescription()	:	string;

				public	function	getAdditionalData()	:	array;

}

//	In	src/Acme/BooksRead/Exception/MiddlewareExceptionTrait.php:

namespace	Acme\BooksRead\Exception;

trait	MiddlewareExceptionTrait

{

				private	$statusCode;

				private	$title;

				private	$description;

				private	$additionalData	=	[];

				public	function	getStatusCode()	:	int

				{

								return	$this->statusCode;

				}

				public	function	getTitle()	:	string

				{

								return	$this->title;

				}

				public	function	getDescription()	:	string

				{

								return	$this->description;

				}

				public	function	getAdditionalData()	:	array

				{

								return	$this->additionalData;

				}

}

Error	Handling	in	Expressive

54

//	In	src/Acme/BooksRead/Exception/ServerError.php:

namespace	Acme\BooksRead\Exception;

use	RuntimeException;

class	ServerError	extends	RuntimeException	implements	MiddlewareException

{

				use	MiddlewareExceptionTrait;

				public	static	function	create(string	$title,	string	$description,	array	$additiona

lData	=	[])

				{

								$e	=	new	self($description,	500);

								$e->statusCode	=	500;

								$e->title	=	$title;

								$e->additionalData	=	$additionalData;

								return	$e;

				}

				public	function	getType()	:	string

				{

								return	'https://example.com/api/problems/server-error';

				}

}

Error	Handling	in	Expressive

55

//	In	src/Acme/BooksRead/Exception/InvalidRequest.php:

namespace	Acme\BooksRead\Exception;

use	RuntimeException;

class	InvalidRequest	extends	RuntimeException	implements	MiddlewareException

{

				use	MiddlewareExceptionTrait;

				public	static	function	create(string	$title,	string	$description,	array	$additiona

lData	=	[])

				{

								$e	=	new	self($description,	400);

								$e->statusCode	=	400;

								$e->title	=	$title;

								$e->additionalData	=	$additionalData;

								return	$e;

				}

				public	function	getType()	:	string

				{

								return	'https://example.com/api/problems/invalid-request';

				}

}

These	specialized	exception	types	have	additional	methods	for	retrieving	additional	data.
Furthermore,	they	set	default	exception	codes,	which	may	be	repurposed	as	status	codes.

A	Problem	Details	error	handler
What	we	want	to	have	happen	is	for	our	API	to	return	data	in	Problem	Details 	format.

To	accomplish	this,	we'll	create	a	new	middleware	that	will	catch	our	domain-specific
exception	type	in	order	to	create	an	appropriate	response	for	us.

2

Error	Handling	in	Expressive

56

//	In	src/Acme/BooksRead/ProblemDetailsMiddleware.php:

namespace	Acme\BooksRead;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Throwable;

use	Zend\Diactoros\Response\JsonResponse;

class	ProblemDetailsMiddleware	implements	MiddlewareInterface

{

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								try	{

												$response	=	$delegate->process($request);

												return	$response;

								}	catch	(Exception\MiddlewareException	$e)	{

												//	caught;	we'll	handle	it	following	the	try/catch	block

								}	catch	(Throwable	$e)	{

												throw	$e;

								}

								$problem	=	[

												'type'			=>	$e->getType(),

												'title'		=>	$e->getTitle(),

												'detail'	=>	$e->getDescription(),

];

								$problem	=	array_merge($e->getAdditionalData(),	$problem);

								return	new	JsonResponse($problem,	$e->getStatusCode(),	[

												'Content-Type'	=>	'application/problem+json',

]);

				}

}

This	middleware	always	delegates	processing	of	the	request,	but	does	so	in	a	try/catch
block.	If	it	catches	our	special		MiddlewareException	,	it	will	process	it;	otherwise,	it	re-throws
the	caught	exception,	to	allow	middleware	in	an	outer	layer	to	handle	it.

Composing	the	error	handler
In	our	previous	article,	Nested	Middleware	in	Expressive,	we	detail	how	to	nest
middleware	pipelines	and	create	nested	middleware	pipelines	for	routed	middleware.
We'll	use	those	techniques	here.	Please	read	that	before	continuing.

Error	Handling	in	Expressive

57

Assuming	we	have	already	defined	a	factory	for	our		ListBooksRead		middleware	(likely	class
	Acme\BooksRead\ListBooksReadFactory	,	in		src/Acme/BooksRead/ListBooksReadFactory.php),	we
have	a	few	options.	First,	we	could	compose	this	error	handler	in	a	middleware	pipeline
within	our	routing	configuration:

//	In	config/routes.php:

$app->get('/api/books-read',	[

				\Acme\BooksRead\ProblemDetailsMiddleware::class,

				\Acme\BooksRead\ListBooksRead::class,

],	'api.books-read')

If	there	are	other	concerns	—	such	as	authentication,	authorization,	content	negotiation,	etc.
—	you	may	want	to	instead	create	a	delegator	factory;	this	can	then	be	re-used	for	other	API
resources	that	need	the	same	set	of	middleware.	As	an	example:

//	In	src/Acme/BooksRead/ApiMiddlewareDelegatorFactory.php:

namespace	Acme\BooksRead;

use	Psr\Container\ContainerInterface;

use	Zend\Expressive\Application;

use	Zend\Expressive\Router\RouterInterface;

class	ApiMiddlewareDelegatorFactory

{

				public	function	__invoke(ContainerInterface	$container,	$name,	callable	$callback)

				{

								$apiPipeline	=	new	Application(

												$container->get(RouterInterface::class),

												$container

);

								$apiPipeline->pipe(ProblemDetailsMiddleware::class);

								//	..and	pipe	other	middleware	as	necessary...

								$apiPipeline->pipe($callback());

								return	$apiPipeline;

				}

}

The	above	would	then	be	registered	as	a	delegator	with	your		ListBooksRead		service:

Error	Handling	in	Expressive

58

//	In	Acme\BooksRead\ConfigProvider,	or	any	config/autoload/*.global.php:

return	[

				'dependencies'	=>	[

								'delegators'	=>	[

												\Acme\BooksRead\ListBooksRead::class	=>	[

																\Acme\BooksRead\ApiMiddlewareDelegatorFactory::class,

],

],

]

];

End	result
Once	you	have	created	the	pipeline,	you	should	get	some	nice	errors:

HTTP/1.1	400	Client	Error

Content-Type:	application/problem+json

{

		"type":	"https://example.com/api/problems/invalid-request",

		"title":	"Invalid	sort	direction	specified",

		"detail":	"The	sort	direction	specified	must	be	one	of	[ASC,	DESC]"

}

This	approach	to	error	handling	allows	you	to	be	as	granular	or	as	generic	as	you	like	with
regards	to	how	errors	are	handled.	The	shipped	error	handler	takes	an	all-or-nothing
approach,	handling	both	PHP	errors	and	exceptions/throwables,	but	treating	them	all	the
same.	By	sprinkling	more	specific	error	handlers	into	your	routed	middleware	pipelines,	you
can	have	more	control	over	how	your	application	behaves,	based	on	the	context	in	which	it
executes.

While	this	article	demonstrates	an	approach	to	building	error	middleware	for	reporting	in
Problem	Details	format,	you	will	likely	want	to	check	out	the	official	offering	via	the
zendframework/zend-problem-details	package.	We	detail	that	in	the	chapter	REST
Representations	for	Expressive.

Footnotes

.	https://docs.zendframework.com/zend-expressive/features/error-handling/	↩

.	https://tools.ietf.org/html/rfc7807	↩

1

2

Error	Handling	in	Expressive

59

https://docs.zendframework.com/zend-expressive/features/error-handling/
https://tools.ietf.org/html/rfc7807

Error	Handling	in	Expressive

60

Using	Configuration-Driven	Routes	in
Expressive
by	Matthew	Weier	O'Phinney

Expressive	1	used	configuration-driven	pipelines	and	routing;	Expressive	2	switches	to	use
programmatic	pipelines	and	routes	instead.	The	programmatic	approach	was	chosen	as
many	developers	have	indicated	they	find	it	easier	to	understand	and	easier	to	read,	and
ensures	they	do	not	have	any	configuration	conflicts.

However,	there	are	times	you	may	want	to	use	configuration.	For	example,	when	you	are
writing	re-usable	modules,	it's	often	easier	to	provide	configuration	for	routed	middleware,
than	to	expect	users	to	cut-and-paste	examples,	or	use	features	such	as	delegator
factories .

Fortunately,	starting	in	Expressive	2,	we	offer	a	couple	different	mechanisms	to	support
configuration-driven	pipelines	and	routing.

Configuration	Only
By	default	in	Expressive	2,	and	if	you	run	the		expressive-pipeline-from-config		tool	to
migrate	from	v1	to	v2,	we	enable	a	specific	flag	to	force	usage	of	programmatic	pipelines:

//	Within	config/autoload/zend-expressive.global.php	in	v2,

//	and	config/autoload/programmatic-pipeline.global.php	for	v1	projects	that

//	migrate	using	the	tooling:

return	[

				'zend-expressive'	=>	[

								'programmatic_pipeline'	=>	true,

],

];

By	removing	this	setting,	or	toggling	it	to		false	,	you	can	go	back	to	the	original	Expressive
1	behavior	whereby	the	pipeline	and	routing	are	completely	generated	by	configuration.	You
can	read	the	documentation	on	the	ApplicationFactory 	for	details	on	how	to	configure	the
pipeline	and	routes	in	this	situation.

1

2

Using	Configuration-Driven	Routes	in	Expressive

61

https://mwop.net/

Beware!

If	you	also	have	programmatic	declarations	in	your		config/pipeline.php		and/or
	config/routes.php		files,	and	these	are	still	included	from	your		public/index.php	,	you
may	run	into	conflicts	when	you	disable	programmatic	pipelines!	Comment	out	the
	require		lines	in	your		public/index.php		after	toggling	the	configuration	value	to	be
safe!

The	key	advantage	to	using	configuration	is	that	you	can	override	configuration	by	providing
	config/autoload/*.local.php		files;	this	gives	the	ability	to	substitute	different	middleware
when	desired.	That	said,	if	you	use	arrays	of	middleware	to	create	custom	pipelines,
configuration	overriding	may	not	work	as	expected.

Selective	Configuration
There	are	a	few	drawbacks	to	going	configuration-only:

Most	pipelines	will	be	static.
Configuration	is	more	verbose	than	programmatic	declarations.

Fortunately,	starting	with	Expressive	2,	you	can	combine	the	two	approaches,	due	to	the
addition	of	two	methods	to		Zend\Expressive\Application	:

public	function	injectPipelineFromConfig(array	$config	=	null)	:	void;

public	function	injectRoutesFromConfig(array	$config	=	null)	:	void;

(In	each	case,	if	passed	no	values,	they	will	use	the		config		service	composed	in	the
container	the		Application		instance	uses.)

In	the	case	of		injectPipelineFromConfig()	,	the	method	pulls	the		middleware_pipeline		value
from	the	passed	configuration;		injectRoutesFromConfig()		pulls	from	the		routes		value.

Where	would	you	use	this?

One	place	to	use	it	is	when	modules	provide	routing	in	their		ConfigProvider	.	For	instance,
let's	say	I	have	a		BooksApi\ConfigProvider		class	that	returns	a		routes		key	with	the	default
set	of	routes	I	feel	should	be	defined:

<?php

//	in	src/BooksApi/ConfigProvider.php:

namespace	BooksApi;

class	ConfigProvider

Using	Configuration-Driven	Routes	in	Expressive

62

{

				public	function	__invoke()	:	array

				{

								return	[

												'dependencies'	=>	$this->getDependencies(),

												'routes'							=>	$this->getRoutes(),

];

				}

				public	function	getDependencies()	:	array

				{

								//	...

				}

				public	function	getRoutes()	:	array

				{

								return	[

												[

																'name'												=>	'books'

																'path'												=>	'/api/books',

																'middleware'						=>	Action\ListBooks::class,

																'allowed_methods'	=>	['GET'],

],

												[

																'path'												=>	'/api/books',

																'middleware'						=>	Action\CreateBook::class,

																'allowed_methods'	=>	['POST'],

],

												[

																'name'												=>	'book'

																'path'												=>	'/api/books/{id:\d+}',

																'middleware'						=>	Action\DisplayBook::class,

																'allowed_methods'	=>	['GET'],

],

												[

																'path'												=>	'/api/books/{id:\d+}',

																'middleware'						=>	Action\UpdateBook::class,

																'allowed_methods'	=>	['PATCH'],

],

												[

																'path'												=>	'/api/books/{id:\d+}',

																'middleware'						=>	Action\DeleteBook::class,

																'allowed_methods'	=>	['DELETE'],

],

];

				}

}

If	I,	as	an	application	developer,	feel	those	defaults	do	not	conflict	with	my	application,	I
could	do	the	following	within	my		config/routes.php		file:

Using	Configuration-Driven	Routes	in	Expressive

63

<?php

//	config/routes.php:

$app->get('/',	App\HomePageAction::class,	'home');

$app->injectRoutesFromConfig((new	BooksApi\ConfigProvider())());

//	...

By	invoking	the		BooksApi\ConfigProvider	,	I	can	be	assured	I'm	only	injecting	those	routes
defined	by	that	given	module,	and	not	all	routes	defined	anywhere	in	my	configuration.	I've
also	saved	myself	a	fair	bit	of	copy-pasta!

Caution:	pipelines

We	do	not	recommend	mixing	programmatic	and	configuration-driven	pipelines,	due
to	issues	of	ordering.

When	you	create	a	programmatic	pipeline,	the	pipeline	is	created	in	exactly	the	order	in
which	you	declare	it:

$app->pipe(OriginalMessages::class);

$app->pipe(XClacksOverhead::class);

$app->pipe(ErrorHandler::class);

$app->pipe(ServerUrlMiddleware::class);

$app->pipeRoutingMiddleware();

$app->pipe(ImplicitHeadMiddleware::class);

$app->pipe(ImplicitOptionsMiddleware::class);

$app->pipe(UrlHelperMiddleware::class);

$app->pipeDispatchMiddleware();

$app->pipe(NotFoundHandler::class);

In	other	words,	when	you	look	at	the	pipeline,	you	know	immediately	what	the
outermost	middleware	is,	and	the	path	to	the	innermost	middleware.

Configuration-driven	middleware	allows	you	to	specify	priority	values	to	specify	the
order	in	which	middleware	is	piped;	higher	values	are	piped	earlies,	lowest	(including
negative!)	values	are	piped	last.

What	happens	when	you	mix	the	systems?	It	depends	on	when	you	inject
configuration-driven	middleware:

Using	Configuration-Driven	Routes	in	Expressive

64

//	Middleware	from	configuration	applies	first:

$app->injectPipelineFromConfig($pipelineConfig)

$app->pipe(/*	...	*/);

//	Middleware	from	configuration	applies	last:

$app->pipe(/*	...	*/);

$app->injectPipelineFromConfig($pipelineConfig)

//	Or	mix	it	up?

$app->pipe(/*	...	*/);

$app->injectPipelineFromConfig($pipelineConfig)

$app->pipe(/*	...	*/);

This	can	lead	to	some	tricky	situations.	We	suggest	sticking	to	one	or	the	other,	to
ensure	you	can	fully	visualize	the	entire	pipeline	at	once.

Summary
The	new		Application::injectRoutesFromConfig()		method	offered	in	Expressive	2	provides
you	with	a	useful	tool	for	providing	routing	within	your	Expressive	modules.

This	is	not	the	only	way	to	provide	routing,	however.	We	detail	another	approach	to
autowiring	routes	in	the	manual 	that	provides	a	way	to	keep	the	programmatic	approach,
by	decorating	instantiation	of	the		Application		instance.

We	hope	this	opens	some	creative	routing	possibilities	for	Expressive	developers,
particularly	those	creating	reusable	modules!

Footnotes

.	https://docs.zendframework.com/zend-expressive/cookbook/autowiring-routes-and-
pipelines/#delegator-factories	↩

.	https://docs.zendframework.com/zend-
expressive/features/container/factories/#applicationfactory	↩

.	https://docs.zendframework.com/zend-expressive/cookbook/autowiring-routes-and-
pipelines/	↩

3

1

2

3

Using	Configuration-Driven	Routes	in	Expressive

65

https://docs.zendframework.com/zend-expressive/cookbook/autowiring-routes-and-pipelines/#delegator-factories
https://docs.zendframework.com/zend-expressive/features/container/factories/#applicationfactory
https://docs.zendframework.com/zend-expressive/cookbook/autowiring-routes-and-pipelines/

Handling	OPTIONS	and	HEAD	Requests
with	Expressive
by	Matthew	Weier	O'Phinney

In	v1	releases	of	Expressive,	if	you	did	not	define	routes	that	included	the		OPTIONS		or		HEAD	
HTTP	request	methods,	routing	would	result	in		404	Not	Found		statuses,	even	if	a	specified
route	matched	the	given	URI.	RFC	7231 ,	however,	states	that	both	of	these	request
methods	SHOULD	work	for	a	given	resource	URI,	so	long	as	it	exists	on	the	server.	This	left
users	in	a	bit	of	a	bind:	if	they	wanted	to	comply	with	the	specification	(which	is	often
necessary	to	work	correctly	with	HTTP	client	software),	they	would	need	to	either:

inject	additional	routes	for	handling	these	methods,	or
overload	existing	middleware	to	also	accept	these	methods.

In	the	case	of	a		HEAD		request,	the	specification	indicates	that	the	resulting	response	should
be	identical	to	that	of	a		GET		request	to	the	same	URI,	only	with	no	body	content.	This	would
mean	having	the	same	response	headers.

In	the	case	of	an		OPTIONS		request,	typically	you	would	respond	with	a		200	OK		response
status,	and	at	least	an		Allow		header	indicating	what	HTTP	request	methods	the	resource
allows.

Sounds	like	these	could	be	automated,	doesn't	it?

In	Expressive	2,	we	did!

Handling	HEAD	requests
If	you	are	using	the	v2	release	of	the	Expressive	skeleton,	or	have	used	the		expressive-
pipeline-from-config		tool	to	migrate	your	application	to	v2,	then	you	already	have	support
for	implicitly	adding		HEAD		support	to	your	routes.	If	not,	please	go	read	the	documentation .

As	noted	in	the	documentation,	the	support	is	provided	by
	Zend\Expressive\Middleware\ImplicitHeadMiddleware	,	and	it	operates:

If	the	request	method	is		HEAD	,	AND
the	request	composes	a		RouteResult		attribute,	AND
the	route	result	composes	a		Route		instance,	AND
the	route	returns		true		for	the		implicitHead()		method,	THEN
the	middleware	will	return	a	response.

1

2

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

66

https://mwop.net/

When	the	matched	route	supports	the		GET		method,	it	will	dispatch	it,	and	then	inject	the
returned	response	with	an	empty	body	before	returning	it;	this	preserves	the	original
response	headers,	allowing	it	to	operate	per	RFC	7231	as	described	above.	If		GET		is	not
supported,	it	simply	returns	an	empty	response.

What	if	you	want	to	customize	what	happens	when		HEAD		is	called	for	a	given	route?

That's	easy:	register	custom	middleware!	As	a	simple,	inline	example:

//	In	config/routes.php:

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\EmptyResponse;

$app->route(

				'/foo',

				new	class	implements	MiddlewareInterface

				{

								public	function	process(ServerRequestInterface	$request,	DelegateInterface	$de

legate)

								{

												//	Return	a	custom,	empty	response

												$response	=	new	EmptyResponse(200,	[

																'X-Foo'	=>	'Bar',

]);

								}

				},

				['HEAD']

);

Handling	OPTIONS	requests
Like		HEAD		requests	above,	if	you're	using	Expressive	2,	the	middleware	for	implicitly
handling		OPTIONS		requests	is	already	enabled;	if	not,	please	go	read	the	documentation .

	OPTIONS		requests	are	handled	by		Zend\Expressive\Middleware\ImplicitOptionsMiddleware	,
which:

If	the	request	method	is		OPTIONS	,	AND
the	request	composes	a		RouteResult		attribute,	AND
the	route	result	composes	a		Route		instance,	AND
the	route	returns	true	for	the		implicitOptions()		method,	THEN
the	middleware	will	return	a	response	with	an		Allow		header	indicating	methods	the
route	allows.

3

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

67

The	Expressive	contributors	worked	to	ensure	this	is	consistent	across	supported	router
implementations;	be	aware,	however,	that	if	you	are	using	a	custom	router,	it's	possible	that
this	may	result	in		Allow		headers	that	only	contain	a	subset	of	all	allowed	HTTP	methods.

What	happens	if	you	want	to	provide	a	custom		OPTIONS		response?	For	example,	a	number
of	prominent	API	developers	suggest	having		OPTIONS		payloads	with	usage	instructions,
such	as	this:

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

68

HTTP/1.1	200	OK

Allow:	GET,	POST

Content-Type:	application/json

{

				"GET":	{

								"query":	{

												"page":	"int;	page	of	results	to	return",

												"per_page":	"int;	number	of	results	to	return	per	page"

								},

								"response":	{

												"total":	"Total	number	of	items",

												"count":	"Total	number	of	items	returned	on	this	page",

												"_links":	{

																"self":	"URI	to	collection",

																"first":	"URI	to	first	page	of	results",

																"prev":	"URI	to	previous	page	of	results",

																"next":	"URI	to	next	page	of	results",

																"last":	"URI	to	last	page	of	results",

																"search":	"URI	template	for	searching"

												},

												"_embedded":	{

																"books":	[

																				"See	...	for	details"

]

												}

								}

				},

				"POST":	{

								"data":	{

												"title":	"string;	title	of	book",

												"author":	"string;	author	of	book",

												"info":	"string;	book	description	and	notes"

								},

								"response":	{

												"_links":	{

																"self":	"URI	to	book"

												},

												"id":	"string;	generated	UUID	for	book",

												"title":	"string;	title	of	book",

												"author":	"string;	author	of	book",

												"info":	"string;	book	description	and	notes"

								}

				}

}

The	answer	is	the	same	as	with		HEAD		requests:	register	a	custom	route!

<?php

//	In	config/routes.php:

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

69

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\JsonResponse;

$app->route(

				'/books',

				new	class	implements	MiddlewareInterface

				{

								public	function	process(ServerRequestInterface	$request,	DelegateInterface	$de

legate)

								{

												//	Return	a	custom	response

												$response	=	new	JsonResponse([

																'GET'	=>	[

																				'query'	=>	[

																								'page'	=>	'int;	page	of	results	to	return',

																								'per_page'	=>	'int;	number	of	results	to	return	per	page',

],

																				'response'	=>	[

																								'total'	=>	'Total	number	of	items',

																								'count'	=>	'Total	number	of	items	returned	on	this	page',

																								'_links'	=>	[

																												'self'	=>	'URI	to	collection',

																												'first'	=>	'URI	to	first	page	of	results',

																												'prev'	=>	'URI	to	previous	page	of	results',

																												'next'	=>	'URI	to	next	page	of	results',

																												'last'	=>	'URI	to	last	page	of	results',

																												'search'	=>	'URI	template	for	searching',

],

																								'_embedded'	=>	[

																												'books'	=>	[

																																'See	...	for	details',

],

],

],

],

																'POST'	=>	[

																				'data'	=>	[

																								'title'	=>	'string;	title	of	book',

																								'author'	=>	'string;	author	of	book',

																								'info'	=>	'string;	book	description	and	notes',

],

																				'response'	=>	[

																								'_links'	=>	[

																												'self'	=>	'URI	to	book',

],

																								'id'	=>	'string;	generated	UUID	for	book',

																								'title'	=>	'string;	title	of	book',

																								'author'	=>	'string;	author	of	book',

																								'info'	=>	'string;	book	description	and	notes',

],

],

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

70

],	200,	['Allow'	=>	'GET,POST']);

								}

				},

				['OPTIONS']

);

Final	word
Obviously,	you	may	not	want	to	use	inline	classes	as	described	above,	but	hopefully	with	the
above	examples,	you	can	begin	to	see	the	possibilities	for	handling		HEAD		and		OPTIONS	
requests	in	Expressive.	The	simplest	option,	which	will	likely	suffice	for	the	majority	of	use
cases,	is	now	built-in	to	the	skeleton,	and	added	by	default	when	using	the	migration	tools.
For	those	other	cases	where	you	need	further	customization,	Expressive's	routing
capabilities	give	you	the	flexibility	and	power	to	accomplish	whatever	you	might	need.

For	more	information	on	the	built-in	capabilities,	visit	the	documentation .

Footnotes

.	https://tools.ietf.org/html/rfc7231	↩

.	https://docs.zendframework.com/zend-expressive/features/middleware/implicit-
methods-middleware/#implicitheadmiddleware	↩

.	https://docs.zendframework.com/zend-expressive/features/middleware/implicit-
methods-middleware/#implicitoptionsmiddleware	↩

.	https://docs.zendframework.com/zend-expressive/features/middleware/implicit-
methods-middleware/	↩

4

1

2

3

4

Handling	OPTIONS	and	HEAD	Requests	with	Expressive

71

https://tools.ietf.org/html/rfc7231
https://docs.zendframework.com/zend-expressive/features/middleware/implicit-methods-middleware/#implicitheadmiddleware
https://docs.zendframework.com/zend-expressive/features/middleware/implicit-methods-middleware/#implicitoptionsmiddleware
https://docs.zendframework.com/zend-expressive/features/middleware/implicit-methods-middleware/

Caching	middleware	with	Expressive
by	Enrico	Zimuel

Performance	is	one	of	the	key	feature	for	web	application.	Using	a	middleware	architecture
makes	it	very	simple	to	implement	a	caching	system	in	PHP.

The	general	idea	is	to	store	the	response	output	of	a	URL	in	a	file	(or	in	memory,	using
memcached)	and	use	it	for	subsequent	requests.	In	this	way	we	can	bypass	the	execution
of	middleware	nested	further	in	the	pipeline	starting	from	the	second	request.

Of	course,	this	technique	can	only	be	applied	for	static	content	that	does	not	change
between	requests.

Implement	a	caching	middleware
Imagine	we	want	to	create	a	simple	cache	system	with	Expressive.	We	can	use	an
implementation	like	the	following:

1

Caching	middleware

72

https://www.zimuel.it

namespace	App\Action;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	ServerMiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\HtmlResponse;

class	CacheMiddleware	implements	ServerMiddlewareInterface

{

				private	$config;

				public	function	__construct(array	$config)

				{

								$this->config	=	$config;

				}

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								$url		=	str_replace('/',	'_',	$request->getUri()->getPath());

								$file	=	$this->config['path']	.	$url	.	'.html';

								if	($this->config['enabled']	&&	file_exists($file)	&&

												(time()	-	filemtime($file))	<	$this->config['lifetime'])	{

												return	new	HtmlResponse(file_get_contents($file));

								}

								$response	=	$delegate->process($request);

								if	($response	instanceof	HtmlResponse	&&	$this->config['enabled'])	{

												file_put_contents($file,	$response->getBody());

								}

								return	$response;

				}

}

The	idea	of	this	middleware	is	quite	simple.	If	the	caching	system	is	enabled	and	if	the
requested	URL	matches	an	existing	cache	file,	we	return	the	cache	content	as	an
HtmlResponse ,	ending	the	execution	flow.

If	the	requested	URL	path	does	not	exist	in	cache,	we	delegate	to	the	next	middleware	in	our
queue,	and,	if	caching	is	enabled,	cache	the	response	before	returning	it.

Configuring	the	cache	system
To	manage	the	cache,	we	used	a	configuration	key		cache		to	specify	the		path		of	the	cache
files,	the		lifetime		in	seconds	and	the		enabled		value	to	turn	the	caching	system	on	and
off.

2

Caching	middleware

73

Since	we	use	a	file	to	store	the	cache	content,	we	can	use	the	file	modification	time	to
manage	the	lifetime	of	the	cache	via	the	PHP	function		filemtime()	 .

Note:	if	you	want	to	use	memcached	instead	of	the	filesystem,	you	need	to	replace	the
	file_get_contents()		and		file_put_contents()		functions	with		Memcached::get()		and
	Memcached::set()	.	Moreover,	you	do	not	need	to	check	for	lifetime	because	when	you
will	instead	set	an	expiration	time	when	pushing	content	to	memcached.

In	order	to	pass	the		$config		dependency,	we	will	create	a	factory	class:

namespace	App\Action;

use	Interop\Container\ContainerInterface;

use	Exception;

class	CacheFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$config	=	$container->get('config');

								$config	=	$config['cache']	??	[];

								if	(!	array_key_exists('enabled',	$config))	{

												$config['enabled']	=	false;

								}

								if	($config['enabled'])	{

												if	(!	isset($config['path']))	{

																throw	new	Exception('The	cache	path	is	not	configured');

												}

												if	(!	isset($config['lifetime']))	{

																throw	new	Exception('The	cache	lifetime	is	not	configured');

												}

								}

								return	new	CacheMiddleware($config);

				}

}

We	can	store	this	configuration	in	a	plain	PHP	file	in	the		config/autoload/		directory;	for
example,	we	could	put	it	in		config/autoload/cache.local.php		with	the	following	contents:

return	[

				'cache'	=>	[

						'enabled'		=>	true,

						'path'					=>	'data/cache/',

						'lifetime'	=>	3600	//	in	seconds

]

];

3

Caching	middleware

74

In	the	above,	we	specify		data/cache/		as	the	cache	directory;	since	Expressive	sets	the
working	directory	to	the	application	root,	this	will,	resolve	to	that	location.

The	content	of	this	folder	should	be	omitted	from	your	version	control;	as	an	example,	with
Git,	you	can	place	a		.gitignore		file	inside	the		cache		folder	with	the	following	content:

*

!.gitignore

Next,	in	order	to	activate	the	caching	system,	we	need	to	add	the		CacheMiddleware		class	as
service.	We	do	that	via	a	global	configuration	file	such	as
	/config/autoload/cache.global.php		with	the	following	content:

return	[

				'dependencies'	=>	[

								'factories'	=>	[

												App\Action\CacheMiddleware::class	=>	App\Action\CacheFactory::class

]

]

];

Enabling	caching	for	specific	routes
We	mentioned	earlier	that	this	caching	mechanism	only	works	for	static	content.	That	means
we	need	a	way	to	enable	the	cache	only	for	specific	routes.	We	do	this	by	specifying	an
array	of	middleware	for	those	routes,	and	adding	the		CacheMiddleware		class	as	first
middleware	to	be	executed	in	those	routes.

For	instance,	imagine	we	have	an		/about		route	that	displays	an	"About"	page	for	your
website.	We	can	add	the		CacheMiddleware		as	follows:

use	App\Action;

$app->get('/about',	[

				Action\CacheMiddleware::class,

				Action\AboutAction::class

],	'about');

Because	the		CacheMiddleware		appears	first	in	the	array,	it	will	execute	first,	delivering	the
cached	contents	after	the	first	request	to	the	route.	(The		$app		object	is	an	instance	of
	Zend\Expressive\Application	.)

Caching	middleware

75

Conclusion
In	this	article,	we	demonstrated	building	a	lightweigth	caching	system	for	a	PHP	middleware
application.	A	middleware	architecture	facilitates	the	design	of	a	cache	layer	because	it
allows	composing	middleware	to	create	an	HTTP	request	workflow.

Footnotes

.	https://memcached.org	↩

.	https://docs.zendframework.com/zend-diactoros/custom-responses/#html-responses
↩

.	http://php.net/filemtime	↩

1

2

3

Caching	middleware

76

https://memcached.org
https://docs.zendframework.com/zend-diactoros/custom-responses/#html-responses
http://php.net/filemtime

Middleware	authentication
by	Enrico	Zimuel

Many	web	applications	require	restricting	specific	areas	to	authenticated	users,	and	may
further	restrict	specific	actions	to	authorized	user	roles.	Implementing	authentication	and
authorization	in	a	PHP	application	is	often	non-trivial	as	doing	so	requires	altering	the
application	workflow.	For	instance,	if	you	have	an	MVC	design,	you	may	need	to	change	the
dispatch	logic	to	add	an	authentication	layer	as	an	initial	event	in	the	execution	flow,	and
perhaps	apply	restrictions	within	your	controllers.

Using	a	middleware	approach	is	simpler	and	more	natural,	as	middleware	easily
accommodates	workflow	changes.	In	this	article,	we	will	demonstrate	how	to	provide
authentication	in	a	PSR-7	middleware	application	using	Expressive	and	zend-
authentication .	We	will	build	a	simple	authentication	system	using	a	login	page	with
username	and	password	credentials.

We	detail	authorization	in	the	next	article.

Getting	started
This	article	assumes	you	have	already	created	an	Expressive	application.	For	the	purposes
of	our	application,	we'll	create	a	new	module,		Auth	,	in	which	we'll	put	our	classes,
middleware,	and	general	configuration.

First,	if	you	have	not	already,	install	the	tooling	support:

$	composer	require	--dev	zendframework/zend-expressive-tooling

Next,	we'll	create	the		Auth		module:

$./vendor/bin/expressive	module:create	Auth

With	that	out	of	the	way,	we	can	get	started.

Authentication

1

Middleware	authentication

77

https://www.zimuel.it

The	zend-authentication	component	offers	an	adapter-based	authentication	solution,	with
both	a	number	of	concrete	adapters	as	well	as	mechanisms	for	creating	and	consuming
custom	adapters.

The	component	exposes		Zend\Authentication\Adapter\AdapterInterface	,	which	defines	a
single		authenticate()		method:

namespace	Zend\Authentication\Adapter;

interface	AdapterInterface

{

				/**

					*	Performs	an	authentication	attempt

					*

					*	@return	\Zend\Authentication\Result

					*	@throws	Exception\ExceptionInterface	if	authentication	cannot	be	performed

					*/

				public	function	authenticate();

}

Adapters	implementing	the		authenticate()		method	perform	the	logic	necessary	to
authenticate	a	request,	and	return	the	results	via	a		Zend\Authentication\Result		object.	This
	Result		object	contains	the	authentication	result	code	and,	in	the	case	of	success,	the
user's	identity.	The	authentication	result	codes	are	defined	using	the	following	constants:

namespace	Zend\Authentication;

class	Result

{

				const	SUCCESS	=	1;

				const	FAILURE	=	0;

				const	FAILURE_IDENTITY_NOT_FOUND	=	-1;

				const	FAILURE_IDENTITY_AMBIGUOUS	=	-2;

				const	FAILURE_CREDENTIAL_INVALID	=	-3;

				const	FAILURE_UNCATEGORIZED	=	-4;

}

If	we	want	to	implement	a	login	page	with		username		and		password		authentication,	we	can
create	a	custom	adapter	such	as	the	following:

Middleware	authentication

78

//	In	src/Auth/src/MyAuthAdapter.php:

namespace	Auth;

use	Zend\Authentication\Adapter\AdapterInterface;

use	Zend\Authentication\Result;

class	MyAuthAdapter	implements	AdapterInterface

{

				private	$password;

				private	$username;

				public	function	__construct(/*	any	dependencies	*/)

				{

								//	Likely	assign	dependencies	to	properties

				}

				public	function	setPassword(string	$password)	:	void

				{

								$this->password	=	$password;

				}

				public	function	setUsername(string	$username)	:	void

				{

								$this->username	=	$username;

				}

				/**

					*	Performs	an	authentication	attempt

					*

					*	@return	Result

					*/

				public	function	authenticate()

				{

								//	Retrieve	the	user's	information	(e.g.	from	a	database)

								//	and	store	the	result	in	$row	(e.g.	associative	array).

								//	If	you	do	something	like	this,	always	store	the	passwords	using	the

								//	PHP	password_hash()	function!

								if	(password_verify($this->password,	$row['password']))	{

												return	new	Result(Result::SUCCESS,	$row);

								}

								return	new	Result(Result::FAILURE_CREDENTIAL_INVALID,	$this->username);

				}

}

We	will	want	a	factory	for	this	service	as	well,	so	that	we	can	seed	the	username	and
password	to	it	later:

Middleware	authentication

79

//	In	src/Auth/src/MyAuthAdapterFactory.php:

namespace	Auth;

use	Interop\Container\ContainerInterface;

use	Zend\Authentication\AuthenticationService;

class	MyAuthAdapterFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								//	Retrieve	any	dependencies	from	the	container	when	creating	the	instance

								return	new	MyAuthAdapter(/*	any	dependencies	*/);

				}

}

This	factory	class	creates	and	returns	an	instance	of		MyAuthAdapter	.	We	may	need	to	pass
some	dependencies	to	its	constructor,	such	as	a	database	connection;	these	would	be
fetched	from	the	container.

Authentication	Service
We	can	now	create	a		Zend\Authentication\AuthenticationService		that	composes	our
adapter,	and	then	consume	the		AuthenticationService		in	middleware	to	check	for	a	valid
user.	Let's	now	create	a	factory	for	the		AuthenticationService	:

//	in	src/Auth/src/AuthenticationServiceFactory.php:

namespace	Auth;

use	Interop\Container\ContainerInterface;

use	Zend\Authentication\AuthenticationService;

class	AuthenticationServiceFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								return	new	AuthenticationService(

												null,

												$container->get(MyAuthAdapter::class)

);

				}

}

This	factory	class	retrieves	an	instance	of	the		MyAuthAdapter		service	and	use	it	to	return	an
	AuthenticationService		instance.	The		AuthenticationService		class	accepts	two	parameters:

Middleware	authentication

80

A	storage	service	instance,	for	persisting	the	user	identity.	If	none	is	provided,	the	built-
in	PHP	session	mechanisms	will	be	used.
The	actual	adapter	to	use	for	authentication.

Now	that	we	have	created	both	the	custom	adapter,	as	well	as	factories	for	the	adapter	and
the		AuthenticationService	,	we	need	to	configure	our	application	dependencies	to	use	them:

//	In	src/Auth/src/ConfigProvider.php:

//	Add	the	following	import	statement	at	the	top	of	the	classfile:

use	Zend\Authentication\AuthenticationService;

//	And	update	the	following	method:

public	function	getDependencies()

{

				return	[

								'factories'	=>	[

												AuthenticationService::class	=>	AuthenticationServiceFactory::class,

												MyAuthAdapter::class	=>	MyAuthAdapterFactory::class,

],

];

}

Authenticate	using	a	login	page
With	an	authentication	mechanism	in	place,	we	now	need	to	create	middleware	to	render	the
login	form.	This	middleware	will	do	the	following:

for		GET		requests,	it	will	render	the	login	form.
for		POST		requests,	it	will	check	for	credentials	and	then	attempt	to	validate	them.

for	valid	authentication	requests,	we	will	redirect	to	a	welcome	page
for	invalid	requests,	we	will	provide	an	error	message	and	redisplay	the	form.

Let's	create	the	middleware	now:

//	In	src/Auth/src/Action/LoginAction.php:

namespace	Auth\Action;

use	Auth\MyAuthAdapter;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	ServerMiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Authentication\AuthenticationService;

use	Zend\Diactoros\Response\HtmlResponse;

use	Zend\Diactoros\Response\RedirectResponse;

use	Zend\Expressive\Template\TemplateRendererInterface;

Middleware	authentication

81

class	LoginAction	implements	ServerMiddlewareInterface

{

				private	$auth;

				private	$authAdapter;

				private	$template;

				public	function	__construct(

								TemplateRendererInterface	$template,

								AuthenticationService	$auth,

								MyAuthAdapter	$authAdapter

)	{

								$this->template				=	$template;

								$this->auth								=	$auth;

								$this->authAdapter	=	$authAdapter;

				}

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								if	($request->getMethod()	===	'POST')	{

												return	$this->authenticate($request);

								}

								return	new	HtmlResponse($this->template->render('auth::login'));

				}

				public	function	authenticate(ServerRequestInterface	$request)

				{

								$params	=	$request->getParsedBody();

								if	(empty($params['username']))	{

												return	new	HtmlResponse($this->template->render('auth::login',	[

																'error'	=>	'The	username	cannot	be	empty',

]));

								}

								if	(empty($params['password']))	{

												return	new	HtmlResponse($this->template->render('auth::login',	[

																'username'	=>	$params['username'],

																'error'				=>	'The	password	cannot	be	empty',

]));

								}

								$this->authAdapter->setUsername($params['username']);

								$this->authAdapter->setPassword($params['password']);

								$result	=	$this->auth->authenticate();

								if	(!$result->isValid())	{

												return	new	HtmlResponse($this->template->render('auth::login',	[

																'username'	=>	$params['username'],

																'error'				=>	'The	credentials	provided	are	not	valid',

]));

Middleware	authentication

82

								}

								return	new	RedirectResponse('/admin');

				}

}

This	middleware	manages	two	actions:	rendering	the	login	form,	and	authenticating	the
user's	credentials	when	submitted	via	a		POST		request.

You	will	also	need	to	ensure	that	you	have:

Created	a		login		template.
Added	configuration	to	map	the		auth		template	namespace	to	one	or	more
filesystem	paths.

We	leave	those	tasks	as	an	exercise	to	the	reader.

We	now	need	to	create	a	factory	to	provide	the	dependencies	for	this	middleware:

//	In	src/Auth/src/Action/LoginActionFactory.php:

namespace	Auth\Action;

use	Auth\MyAuthAdapter;

use	Interop\Container\ContainerInterface;

use	Zend\Authentication\AuthenticationService;

use	Zend\Expressive\Template\TemplateRendererInterface;

class	LoginActionFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								return	new	LoginAction(

												$container->get(TemplateRendererInterface::class),

												$container->get(AuthenticationService::class),

												$container->get(MyAuthAdapter::class)

);

				}

}

Map	the	middleware	to	this	factory	in	your	dependencies	configuration	witin	the
	ConfigProvider	:

Middleware	authentication

83

//	In	src/Auth/src/ConfigProvider.php,

//	Update	the	following	method	to	read	as	follows:

public	function	getDependencies()

{

				return	[

								'factories'	=>	[

												Action\LoginAction::class	=>	Action\LoginActionFactory::class,

												AuthenticationService::class	=>	AuthenticationServiceFactory::class,

												MyAuthAdapter::class	=>	MyAuthAdapterFactory::class,

],

];

}

Use	zend-servicemanager's
ReflectionBasedAbstractFactory

If	you	are	using	zend-servicemanager	in	your	application,	you	could	skip	the	step	of
creating	the	factory,	and	instead	map	the	middleware	to
	Zend\ServiceManager\AbstractFactory\ReflectionBasedAbstractFactory	.

Finally,	we	can	create	appropriate	routes.	We'll	map		/login		to	the		LoginAction		now,	and
allow	it	to	react	to	either	the		GET		or		POST		methods:

//	in	config/routes.php:

$app->route('/login',	Auth\Action\LoginAction::class,	['GET',	'POST'],	'login');

Alternately,	the	above	could	be	written	as	two	separate	statements:

//	in	config/routes.php:

$app->get('/login',	Auth\Action\LoginAction::class,	'login');

$app->post('/login',	Auth\Action\LoginAction::class);

Authentication	middleware
Now	that	we	have	the	authentication	service	and	its	adapter	and	the	login	middleware	in
place,	we	can	create	middleware	that	checks	for	authenticated	users,	having	it	redirect	to
the		/login		page	if	the	user	is	not	authenticated.

Middleware	authentication

84

//	In	src/Auth/src/Action/AuthAction.php:

namespace	Auth\Action;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	ServerMiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Authentication\AuthenticationService;

use	Zend\Diactoros\Response\RedirectResponse;

class	AuthAction	implements	ServerMiddlewareInterface

{

				private	$auth;

				public	function	__construct(AuthenticationService	$auth)

				{

								$this->auth	=	$auth;

				}

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								if	(!	$this->auth->hasIdentity())	{

												return	new	RedirectResponse('/login');

								}

								$identity	=	$this->auth->getIdentity();

								return	$delegate->process($request->withAttribute(self::class,	$identity));

				}

}

This	middleware	checks	for	a	valid	identity	using	the		hasIdentity()		method	of
	AuthenticationService	.	If	no	identity	is	present,	we	redirect	the		redirect		configuration
value.

If	the	user	is	authenticated,	we	continue	the	execution	of	the	next	middleware,	storing	the
identity	in	a	request	attribute.	This	facilitates	consumption	of	the	identity	information	in
subsequent	middleware	layers.	For	instance,	imagine	you	need	to	retrieve	the	user's
information:

Middleware	authentication

85

namespace	App\Action;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	ServerMiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

class	FooAction

{

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								$user	=	$request->getAttribute(AuthAction::class);

								//	$user	will	contains	the	user's	identity

				}

}

The		AuthAction		middleware	needs	some	dependencies,	so	we	will	need	to	create	and
register	a	factory	for	it	as	well.

First,	the	factory:

//	In	src/Auth/src/Action/AuthActionFactory.php:

namespace	Auth\Action;

use	Interop\Container\ContainerInterface;

use	Zend\Authentication\AuthenticationService;

use	Exception;

class	AuthActionFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								return	new	AuthAction($container->get(AuthenticationService::class));

				}

}

And	then	mapping	it:

Middleware	authentication

86

//	In	src/Auth/src/ConfigProvider.php:

//	Update	the	following	method	to	read	as	follows:

public	function	getDependencies()

{

				return	[

								'factories'	=>	[

												Action\AuthAction::class	=>	Action\AuthActionFactory::class,

												Action\LoginAction::class	=>	Action\LoginActionFactory::class,

												AuthenticationService::class	=>	AuthenticationServiceFactory::class,

												MyAuthAdapter::class	=>	MyAuthAdapterFactory::class,

],

];

}

Like	the		LoginActionFactory		above,	you	could	skip	the	factory	creation	and	instead	use
the		ReflectionBasedAbstractFactory		if	using	zend-servicemanager.

Require	authentication	for	specific	routes
Now	that	we	built	the	authentication	middleware,	we	can	use	it	to	protect	specific	routes	that
require	authentication.	For	instance,	for	each	route	that	needs	authentication,	we	can	modify
the	routing	to	create	a	pipeline	that	incorporates	our		AuthAction		middleware	early:

$app->get('/admin',	[

				Auth\Action\AuthAction::class,

				App\Action\DashBoardAction::class

],	'admin');

$app->get('/admin/config',	[

				Auth\Action\AuthAction::class,

				App\Action\ConfigAction::class

],	'admin.config');

The	order	of	execution	for	the	middleware	is	the	order	of	the	array	elements.	Since	the
	AuthAction		middleware	is	provided	as	the	first	element,	if	a	user	is	not	authenticated	when
requesting	either	the	admin	dashboard	or	config	page,	they	will	be	immediately	redirected	to
the	login	page	instead.

Conclusion

Middleware	authentication

87

There	are	many	ways	to	accommodate	authentication	within	middleware	applications;	this	is
just	one.	Our	goal	was	to	demonstrate	the	ease	with	which	you	may	compose	authentication
into	existing	workflows	by	creating	middleware	that	intercepts	the	request	early	within	a
pipeline.

You	could	certainly	make	a	number	of	improvements	to	the	workflow:

The	path	to	the	login	page	could	be	configurable.
You	could	capture	the	original	request	path	in	order	to	allow	redirecting	to	it	following
successful	login.
You	could	introduce	rate	limiting	of	login	requests.

These	are	each	interesting	exercises	for	you	to	try!

Footnotes

.	https://docs.zendframework.com/zend-authentication	↩1

Middleware	authentication

88

https://docs.zendframework.com/zend-authentication

Authorize	users	using	Middleware
by	Enrico	Zimuel

In	the	previous	article,	we	demonstrated	how	to	authenticate	a	middleware	application	in
PHP.	In	this	post	we	will	continue	the	discussion,	showing	how	to	manage	authorization.

We	will	start	from	an	authenticated	user	and	demonstrate	how	to	allow	or	disable	actions	for
specific	users.	We	will	collect	users	by	groups	and	we	will	use	a	Role-Based	Access	Control
(RBAC)	system	to	manage	the	authorizations.

To	implement	RBAC,	we	will	consume	zendframework/zend-permissions-rbac .

If	you	are	not	familiar	with	RBAC	and	the	usage	of	zend-permissions-rbac,	we	cover	the
topic	on	our	blog ,	as	well	as	in	the	Zend	Framework	3	Cookbook.

Getting	started
This	article	assumes	you	have	already	created	the		Auth		module,	as	described	in	our
previous	article	on	authentication.	For	the	purposes	of	our	application,	we'll	create	a	new
module,		Permission	,	in	which	we'll	put	our	classes,	middleware,	and	general	configuration.

First,	if	you	have	not	already,	install	the	tooling	support:

$	composer	require	--dev	zendframework/zend-expressive-tooling

Next,	we'll	create	the		Permission		module:

$./vendor/bin/expressive	module:create	Permission

With	that	out	of	the	way,	we	can	get	started.

Authentication
As	already	mentioned,	we	will	reuse	the		Auth		module	created	in	our	previous	post.	We	will
reuse	the		Auth\Action\AuthAction::class		to	get	the	authenticated	user's	data.

Authorization

1

2

Authorize	users	using	Middleware

89

https://www.zimuel.it

In	order	to	manage	authorization,	we	will	use	a	RBAC	system	using	the	user's	role.	A	user's
role	is	a	string	that	represents	the	permission	level;	as	an	example,	the	role		administrator	
might	provide	access	to	all	permissions.

In	our	scenario,	we	want	to	allow	or	disable	access	of	specific	routes	to	a	role	or	set	of	roles.
Each	route	represents	a	permission	in	RBAC	terminology.

We	can	use	zendframework/zend-permissions-rbac 	to	manage	the	RBAC	system	using	a
PHP	configuration	file	storing	the	list	of	roles	and	permissions.	Using	zend-permissions-rbac,
we	can	also	manage	permissions	inheritance.

For	instance,	imagine	implementing	a	blog	application;	we	might	define	the	following	roles:

	administrator	

	editor	

	contributor	

A		contributor		can	create,	edit,	and	delete	only	the	posts	created	by	theirself.	The		editor	
can	create,	edit,	and	delete	all	posts	and	publish	posts	(that	means	enabling	public	view	of	a
post	in	the	web	site).	The		administrator		can	perform	all	actions,	including	changing	the
blog's	configuration.

This	is	a	perfect	use	case	for	using	permission	inheritance.	In	fact,	the		administrator		role
would	inherit	the	permissions	of	the		editor	,	and	the		editor		role	inherits	the	permissions
of	the		contributor	.

To	manage	the	previous	scenario,	we	can	use	the	following	configuration	file:

3

Authorize	users	using	Middleware

90

//	In	src/Permission/config/rbac.php:

return	[

				'roles'	=>	[

								'administrator'	=>	[],

								'editor'								=>	['admin'],

								'contributor'			=>	['editor'],

],

				'permissions'	=>	[

								'contributor'	=>	[

												'admin.dashboard',

												'admin.posts',

],

								'editor'	=>	[

												'admin.publish',

],

								'administrator'	=>	[

												'admin.settings',

],

],

];

In	this	file	we	have	specified	three	roles,	including	the	inheritance	relationship	using	an	array
of	role	names.	The	parent	of		administator		is	an	empty	array,	meaning	no	parents.

The	permissions	are	configured	using	the		permissions		key.	Each	role	has	the	list	of
permissions,	specified	with	an	array	of	route	names.

All	the	roles	can	access	the	route		admin.dashboard		and		admin.posts	.	The		editor		role	can
also	access		admin.publish	.	The		administrator		can	access	all	the	roles	of		contributor	
and		editor	.	Moreover,	only	the		administrator		can	access	the		admin.settings		route.

We	used	the	route	names	as	RBAC	permissions	because	in	this	way	we	can	allow	URL
and	HTTP	methods	using	a	single	resource	name.	Moreover,	in	Expressive	we	have	a
	config/routes.php		file	containing	all	the	routes	and	we	can	easily	use	it	to	add
authorization,	as	we	did	for	authentication.

Authorization	middleware
Now	that	we	have	the	RBAC	configuration	in	place,	we	can	create	a	middleware	that
performs	the	user	authorization	verifications.

We	can	create	an		AuthorizationAction		middleware	in	our		Permission		module	as	follows:

//	in	src/Permission/src/Action/AuthorizationAction.php:

Authorize	users	using	Middleware

91

namespace	Permission\Action;

use	Auth\Action\AuthAction;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	MiddlewareInterface;

use	Permission\Entity\Post	as	PostEntity;

use	Permission\Service\PostService;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\EmptyResponse;

use	Zend\Expressive\Router\RouteResult;

use	Zend\Permissions\Rbac\AssertionInterface;

use	Zend\Permissions\Rbac\Rbac;

use	Zend\Permissions\Rbac\RoleInterface;

class	AuthorizationAction	implements	MiddlewareInterface

{

				private	$rbac;

				private	$postService;

				public	function	__construct(Rbac	$rbac,	PostService	$postService)

				{

								$this->rbac								=	$rbac;

								$this->postService	=	$postService;

				}

				public	function	process(ServerRequestInterface	$request,	DelegateInterface	$delega

te)

				{

								$user	=	$request->getAttribute(AuthAction::class,	false);

								if	(false	===	$user)	{

												return	new	EmptyResponse(401);

								}

								//	if	a	post	attribute	is	present	and	user	is	contributor

								$postUrl	=	$request->getAttribute('post',	false);

								if	(false	!==	$postUrl	&&	'contributor'	===	$user['role'])	{

												$post	=	$this->postService->getPost($postUrl);

												$assert	=	new	class	($user['username'],	$post)	implements	AssertionInterfa

ce	{

																private	$post;

																private	$username;

																public	function	__construct(string	$username,	PostEntity	$post)

																{

																				$this->username	=	$username;

																				$this->post					=	$post;

																}

																public	function	assert(Rbac	$rbac)

																{

																				return	$this->username	===	$this->post->getAuthor();

																}

												};

Authorize	users	using	Middleware

92

								}

								$route					=	$request->getAttribute(RouteResult::class);

								$routeName	=	$route->getMatchedRoute()->getName();

								if	(!	$this->rbac->isGranted($user['role'],	$routeName,	$assert	??	null))	{

												return	new	EmptyResponse(403);

								}

								return	$delegate->process($request);

				}

}

If	the	user	is	not	present,	the		AuthAction::class		attribute	will	be	false.	In	this	case	we	are
returning	a		401		error,	indicating	we	have	an	unauthenticated	user,	and	halting	execution.

If	a	user	is	returned	from		AuthAction::class		attribute,	this	means	that	we	have	an
authenticated	user.

The	authentication	is	performed	by	the		Auth\Action\AuthAction		class	that	stores	the
	AuthAction::class		attribute	in	the	request.	See	the	previous	article	for	more
information.

This	middleware	performs	the	authorization	check	using		isGranted($role,	$permission)	
where		$role		is	the	user's	role	($user['role'])	and		$permission		is	the	route	name,
retrieved	by	the		RouteResult::class		attribute.	If	the	role	is	granted,	we	continue	the
execution	flow	with	the	delegate	middleware.	Otherwise,	we	stop	the	execution	with	a		403	
error,	indicating	lack	of	authorization.

We	manage	also	the	case	when	the	user	is	a		contributor		and	there	is	a		post		attribute	in
the	request	(e.g.	/admin/posts/{post}).	That	means	someone	is	performing	some	action	on	a
specific	post.	To	perform	this	action,	we	require	that	the	owner	of	the	post	should	be	the
same	as	the	authenticated	user.

This	will	prevent	a		contributor		to	change	the	content	of	a	post	if	he/she	is	not	the	author.
We	managed	this	special	case	using	a	dynamic	assertion ,	built	using	an	anonymous	class;
it	checks	if	the	authenticated		username		is	the	same	of	the	author's	post.	We	used	a	general
	PostEntity		class	with	a		getAuthor()		function.

In	order	to	retrieve	for	the	route	name,	we	used	the		RouteResult::class		attribute	provided
by	Expressive.	This	attribute	facilitates	access	to	the	matched	route.

The		AuthorizationAction		middleware	requires	the		Rbac		and	the		PostService	
dependencies.	The	first	is	an	instance	of		Zend\Permissions\Rbac\Rbac		and	the	second	is	a
general	service	to	manage	blog	posts,	i.e.	a	class	that	performs	some	lookup	to	retrieve	the
post	data	from	a	database.

4

Authorize	users	using	Middleware

93

To	inject	these	dependencies,	we	use	an		AuthorizationFactory		like	the	following:

namespace	Permission\Action;

use	Interop\Container\ContainerInterface;

use	Zend\Permissions\Rbac\Rbac;

use	Zend\Permissions\Rbac\Role;

use	Permission\Service\PostService;

use	Exception;

class	AuthorizationFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$config	=	$container->get('config');

								if	(!	isset($config['rbac']['roles']))	{

												throw	new	Exception('Rbac	roles	are	not	configured');

								}

								if	(!isset($config['rbac']['permissions']))	{

												throw	new	Exception('Rbac	permissions	are	not	configured');

								}

								$rbac	=	new	Rbac();

								$rbac->setCreateMissingRoles(true);

								//	roles	and	parents

								foreach	($config['rbac']['roles']	as	$role	=>	$parents)	{

												$rbac->addRole($role,	$parents);

								}

								//	permissions

								foreach	($config['rbac']['permissions']	as	$role	=>	$permissions)	{

												foreach	($permissions	as	$perm)	{

																$rbac->getRole($role)->addPermission($perm);

												}

								}

								$post	=	$container->get(PostService::class);

								return	new	AuthorizationAction($rbac,	$post);

				}

}

This	factory	class	builds	the		Rbac		object	using	the	configuration	file	stored	in
	src/Permission/config/rbac.php	.	We	read	all	the	roles	and	the	permissions	following	the
order	in	the	array.	It	is	important	to	enable	the	creation	of	missing	roles	in	the	Rbac	object
using	the	function		setCreateMissingRoles(true)	.	This	is	required	to	be	sure	to	create	all	the
roles	even	if	we	add	it	out	of	order.	For	instance,	without	this	setting,	the	following
configuration	will	throw	an	exception:

Authorize	users	using	Middleware

94

return	[

				'roles'	=>	[

								'contributor'			=>	['editor'],

								'editor'								=>	['administrator'],

								'administrator'	=>	[],

],

];

because	the		editor		and	the		administrator		roles	are	specified	as	parents	of	other	roles
before	they	were	created.

Finally,	we	can	configure	the		Permission		module	adding	the	following	dependencies:

//	In	src/Permission/src/ConfigProvider.php:

//	Update	the	following	methods:

public	function	__invoke()

{

				return	[

								'dependencies'	=>	$this->getDependencies(),

								'rbac'									=>	include	__DIR__	.	'/../config/rbac.php',

];

}

public	function	getDependencies()

{

				return	[

								'factories'	=>	[

												Service\PostService::class	=>	Service\PostFactory::class,

												Action\AuthorizationAction::class	=>	Action\AuthorizationFactory::class,

],

];

}

Configure	the	route	for	authorization
To	enable	authorization	on	a	specific	route,	we	need	to	add	the
	Permission\Action\AuthorizationAction		middleware	in	the	route,	as	follows:

$app->get('/admin/dashboard',	[

				Auth\Action\AuthAction::class,

				Permission\Action\AuthorizationAction::class,

				Admin\Action\DashboardAction::class

],	'admin.dashboard');

Authorize	users	using	Middleware

95

This	is	an	example	of	the		GET	/admin/dashboard		route	with		admin.dashboard		as	the	name.
We	add		AuthAction		and		AuthorizationAction		before	execution	of	the		DashboardAction	.
The	order	of	the	middleware	array	is	important;	authentication	must	happen	first,	and
authorization	must	happen	before	executing	the	dashboard	middleware.

Add	the		AuthorizationAction		middleware	to	all	routes	requiring	authorization.

Conclusion
This	article,	together	with	the	previous,	demonstrates	how	to	accomodate	authentication	and
authorization	within	middleware	in	PHP.

We	demonstated	how	to	create	two	separate	Expressive	modules,		Auth		and		Permission	,
to	provide	authentication	and	authorization	using	zend-authentication	and	zend-permissions-
rbac.

We	also	showed	the	usage	of	a	dynamic	assertion	for	specific	permissions	based	on	the	role
and	username	of	an	authenticated	user.

The	blog	use	case	proposed	in	this	article	is	quite	simple,	but	the	architecture	used	can	be
applied	also	in	complex	scenarios,	to	manage	permissions	based	on	different	requirements.

Footnotes

.	https://docs.zendframework.com/zend-permissions-rbac	↩

.	https://framework.zend.com/blog/2017-04-27-zend-permissions-rbac.html	↩

.	https://docs.zendframework.com/zend-permissions-rbac	↩

.	https://docs.zendframework.com/zend-permissions-rbac/intro/#dynamic-assertions	↩

1

2

3

4

Authorize	users	using	Middleware

96

https://docs.zendframework.com/zend-permissions-rbac
https://framework.zend.com/blog/2017-04-27-zend-permissions-rbac.html
https://docs.zendframework.com/zend-permissions-rbac
https://docs.zendframework.com/zend-permissions-rbac/intro/#dynamic-assertions

REST	Representations	for	Expressive
by	Matthew	Weier	O'Phinney

At	the	time	of	writing	(September	2017),	we	have	published	two	experimental	components
for	providing	REST	response	representations	for	middleware	applications:

zend-problem-details:	https://github.com/zendframework/zend-problem-details
zend-expressive-hal:	https://github.com/zendframework/zend-expressive-hal

These	components	provide	response	representations	for	APIs	built	with	PSR-7
middleware.	Specifically,	they	provide:

Problem	Details	for	HTTP	APIs	(RFC	7807)
Hypertext	Application	Language	(HAL)

These	two	formats	provide	both	JSON	and	XML	representation	options	(the	latter	through	a
secondary	proposal).

What's	in	a	representation?
So	you're	developing	an	API!

What	can	clients	expect	when	they	make	a	request	to	your	API?	Will	they	get	a	wall	of	text?
or	some	sort	of	serialization?	If	it's	a	serialized	format,	which	ones	do	you	support?	And	how
is	the	data	structured?

The	typical	answer	will	be,	"we'll	provide	JSON	responses."	That	answers	the	serialization
aspect,	but	not	the	data	structure;	for	that,	you	might	develop	and	publish	a	schema	for	your
end	users,	so	they	know	how	to	parse	the	response.

But	you	may	still	have	unanswered	questions:

How	does	the	consumer	know	what	actions	can	next	be	taken,	or	what	resources	might
be	related	to	the	one	requested?
If	the	resource	contains	other	entities,	how	can	they	identify	which	ones	they	can
request	separately,	versus	those	that	are	just	part	of	the	data	structure?

These	and	all	of	the	previous	are	questions	that	a	representation	format	answers.	A	well-
considered	representation	format	will:

Provide	links	to	the	actions	that	may	be	performed	next,	as	well	as	to	related	resources.
Indicate	which	data	elements	represent	other	requestable	resources.

1

2
3

4

REST	Representations	for	Expressive

97

https://mwop.net
https://github.com/zendframework/zend-problem-details
https://github.com/zendframework/zend-expressive-hal

Be	extensible,	to	allow	representing	arbitrary	data.

I	tend	to	think	of	representations	as	falling	into	two	buckets:

Representations	of	errors.
Representations	of	application	resources.

Errors	need	separate	representation,	as	they	are	not	requestable	on	their	own;	they	are
returned	when	something	goes	wrong,	and	need	to	provide	enough	detail	that	the	consumer
can	determine	what	they	need	to	change	in	order	to	perform	a	new	request.

The	Problem	Details	specification	provides	exactly	this.	As	an	example:

{

				"type":	"https://example.com/problems/rate-limit-exceeded",

				"title":	"You	have	exceeded	your	API	rate	limit.",

				"detail":	"You	have	hit	your	rate	limit	of	5000	requests	per	hour.",

				"requests_this_hour":	5025,

				"rate_limit":	5000,

				"rate_limit_reset":	"2017-05-03T14:39-0500"

}

We	chose	Problem	Details	to	standardize	on	when	starting	the	Apigility	project	as	it	has	very
few	requirements,	but	can	model	any	error	easily.	The	ability	to	link	to	documentation
detailing	general	error	types	provides	the	ability	to	communicate	with	your	consumers	about
known	errors	and	how	to	correct	them.

Application	resources	generally	should	have	their	own	schema,	but	having	a	predictable
structure	for	providing	relational	links	(answering	the	"what	can	I	do	next"	question)	and
embedding	related	resources	can	help	those	making	clients	or	those	consuming	your	API	to
automate	many	of	their	processes.	Instead	of	having	a	list	of	URLs	they	can	access,	they
can	hit	one	resource,	and	start	following	the	composed	links;	when	they	present	data,	they
can	also	present	controls	for	the	embedded	resources,	making	it	simpler	to	make	requests
to	these	other	items.

HAL	provides	these	details	in	a	simple	way:	relational	links	are	objects	under	the		_links	
element,	and	embedded	resources	are	under	the		_embedded		element;	all	other	data	is
represented	as	normal	key/value	pairs,	allowing	for	arbitrary	nesting	of	structures.	An
example	payload	might	look	like	the	following:

REST	Representations	for	Expressive

98

{

				"_links":	{

								"self":	{	"href":	"/api/books?page=7"	},

								"first":	{	"href":	"/api/books?page=1"	},

								"prev":	{	"href":	"/api/books?page=6"	},

								"next":	{	"href":	"/api/books?page=8"	},

								"last":	{	"href":	"/api/books?page=17"	}

								"search":	{

												"href":	"/api/books?query={searchTerms}",

												"templated":	true

								}

				},

				"_embedded":	{

								"book":	[

												{

																"_links":	{

																				"self":	{	"href":	"/api/books/1234"	}

																}

																"id":	1234,

																"title":	"Hitchhiker's	Guide	to	the	Galaxy",

																"author":	"Adams,	Douglas"

												},

												{

																"_links":	{

																				"self":	{	"href":	"/api/books/6789"	}

																}

																"id":	6789,

																"title":	"Ancillary	Justice",

																"author":	"Leckie,	Ann"

												}

]

				},

				"_page":	7,

				"_per_page":	2,

				"_total":	33

}

The	above	provides	controls	to	allow	a	consumer	to	navigate	through	a	result	set,	as	well	as
to	perform	another	search	against	the	API.	It	provides	data	about	the	result	set,	and	also
embeds	a	number	of	resources,	with	links	so	that	the	consumer	can	make	requests	against
those	individually.	Having	links	present	in	the	payloads	means	that	if	the	URI	scheme
changes	later,	a	well-written	client	will	be	unaffected,	as	it	will	follow	the	links	delivered	in
response	payloads	instead	of	hard-coding	them.	This	allows	our	API	to	evolve,	without
affecting	the	robustness	of	clients.

A	number	of	other	representation	formats	have	become	popular	over	the	years,	including:

JSON	API
Collection+JSON

5
6

7

REST	Representations	for	Expressive

99

Siren

Each	are	powerful	and	flexible	in	their	own	right.	We	standardized	on	HAL	for	Apigility
originally	as	it	was	one	of	the	first	published	specifications;	we've	continued	with	it	as	it	is	a
format	that's	both	easy	to	generate	as	well	as	parse,	and	extensible	enough	to	answer	the
needs	of	most	API	representations.

zend-problem-details
The	package	zendframework/zend-problem-details 	provides	a	Problem	Details
implementation	for	PHP,	and	specifically	for	generating	PSR-7	responses.	It	provides	a
multi-faceted	approach	to	providing	error	details	to	your	users.

First,	you	can	compose	the		ProblemDetailsResponseFactory		into	your	middleware,	and	use	it
to	generate	and	return	your	error	responses:

return	$this->problemDetails->createResponse(

				$request,																																											//	PSR-7	request

				422,																																																//	HTTP	status

				'Invalid	data	detected	in	book	submission',									//	Detail

				'Invalid	book',																																					//	Problem	title

				'https://example.com/api/doc/errors/invalid-book',		//	Problem	type	(URL	to	detail

s)

				['messages'	=>	$validator->getMessages()]											//	Additional	data

);

The	request	instance	is	passed	to	the	factory	to	allow	it	to	perform	content	negotiation;
zend-problem-details	uses	the		Accept		header	to	determine	whether	to	serve	a	JSON
or	an	XML	representation,	defaulting	to	XML	if	it	is	unable	to	match	to	either	format.

The	above	will	generate	a	response	like	the	following:

HTTP/1.1	422	Unprocessable	Entity

Content-Type:	application/problem+json

{

		"status":	422,

		"title":	"Invalid	Book",

		"type":	"https://example.com/api/doc/errors/invalid-book",

		"detail":	"Invalid	data	detected	in	book	submission",

		"messages":	[

				"Missing	title",

				"Missing	author"

]

}

7

8

REST	Representations	for	Expressive

100

	ProblemDetailsFactory		is	agnostic	of	PSR-7	implementation,	and	allows	you	to	inject	a
response	prototype	and	stream	factory	during	instantiation.	By	default,	it	uses	zend-
diactoros	for	these	artifacts	if	none	are	provided.

Second,	you	can	create	a	response	from	a	caught	exception	or	throwable:

return	$this->problemDetails->createResponseFromThrowable(

				$request,

				$throwable

);

Currently,	the	factory	uses	the	exception	message	for	the	detail,	and	4XX	and	5XX
exception	codes	for	the	status	(defaulting	to	500	for	any	other	value).

At	the	time	of	publication,	we	are	currently	evaluating	a	proposal	that	would	have
caught	exceptions	generate	a	canned	Problem	Details	response	with	a	status	of	500,
so	the	above	behavior	may	change	in	the	future.	If	you	want	to	guarantee	the	code	and
message	are	used,	you	can	create	custom	exceptions,	as	outlined	below.

Third,	extending	on	the	ability	to	create	details	from	throwables,	we	provide	a	custom
exception	interface,		ProblemDetailsException	.	This	interface	defines	methods	for	pulling
additional	information	to	provide	to	a	Problem	Details	response:

namespace	Zend\ProblemDetails\Exception;

interface	ProblemDetailsException

{

				public	function	getStatus()	:	int;

				public	function	getType()	:	string;

				public	function	getTitle()	:	string;

				public	function	getDetail()	:	string;

				public	function	getAdditionalData()	:	array;

}

If	you	throw	an	exception	that	implements	this	interface,	the		createResponseFromThrowable()	
method	shown	above	will	pull	data	from	these	methods	in	order	to	create	the	response.	This
allows	you	to	define	domain-specific	exceptions	that	can	provide	additional	details	when
used	in	an	API	context.

Finally,	we	also	provide	optional	middleware,		ProblemDetailsMiddleware	,	that	does	the
following:

Registers	an	error	handler	that	casts	PHP	errors	in	the	current		error_reporting	
bitmask	to		ErrorException		instances.
Wraps	calls	to	the	delegate	in	a	try/catch	block.

REST	Representations	for	Expressive

101

Passes	any	caught	throwables	to	the		createResponseFromThrowable()		factory	in	order	to
return	Problem	Details	responses.

We	recommend	using	custom	exceptions	and	this	middleware,	as	the	combination	allows
you	to	focus	your	efforts	on	the	positive	outcome	paths	within	your	middleware.

Using	it	in	Expressive

When	using	Expressive,	you	can	then	compose	the		ProblemDetailsMiddleware		within	route-
specific	pipelines,	allowing	you	to	have	separate	error	handlers	for	the	API	parts	of	your
application:

//	In	config/routes.php:

//	Per	route:

$app->get('/api/books',	[

				Zend\ProblemDetails\ProblemDetailsMiddleware::class,

				Books\Action\ListBooksAction::class,

],	'books');

$app->post('/api/books',	[

				Zend\ProblemDetails\ProblemDetailsMiddleware::class,

				Books\Action\CreateBookAction::class,

]);

Alternately,	if	all	API	endpoints	have	a	common	URI	path	prefix,	register	it	as	path-
segregated	middleware:

//	In	config/pipeline.php:

$app->pipe('/api',	Zend\ProblemDetails\ProblemDetailsMiddleware::class);

These	approaches	allow	you	to	deliver	consistently	structured,	useful	errors	to	your	API
consumers.

zend-expressive-hal
The	package	zendframework/zend-expressive-hal 	provides	a	HAL	implementation	for	PSR-
7	applications.	Currently,	it	allows	creating	PSR-7	response	payloads	only;	we	may	consider
parsing	HAL	requests	at	a	future	date,	however.

zend-expressive-hal	implements	PSR-13	(Link	Definition	Interfaces) ,	and	provides
structures	for:

Defining	relational	links

9

10

REST	Representations	for	Expressive

102

Defining	HAL	resources
Composing	relational	links	in	HAL	resources
Embedding	HAL	resources	in	other	HAL	resources

These	utilities	can	be	used	manually,	without	any	other	requirements:

use	Zend\Expressive\Hal\HalResource;

use	Zend\Expressive\Hal\Link;

$author	=	new	HalResource($authorDataArray);

$author	=	$author->withLink(

				new	Link('self',	'/authors/'	.	$authorDataArray['id'])

);

$book	=	new	HalResource($bookDataArray);

$book	=	$book->withLink(

				new	Link('self',	'/books/'	.	$bookDataArray['id'])

);

$book	=	$book->embed('authors',	[$author]);

Both		Link		and		HalResource		are	immutable;	as	such,	if	you	wish	to	make	iterative
changes,	you	will	need	to	re-assign	the	original	value.

These	clases	allow	you	to	model	the	data	to	return	in	your	representation,	but	what	about
returning	a	response	based	on	them?	To	handle	that,	we	have	the		HalResponseFactory	,
which	will	generate	a	response	from	a	resource	provided	to	it:

return	$halResponseFactory->createResponse($request,	$book);

Like	the		ProblemDetailsFactory	,	the		HalResponseFactory		is	agnostic	of	PSR-7
implementation,	and	allows	you	to	inject	a	response	prototype	and	stream	factory
during	instantiation.

Also,	it,	too,	uses	content	negotiation	in	order	to	determine	whether	a	JSON	or	XML
response	should	be	generated.

The	above	might	generate	the	following	response:

REST	Representations	for	Expressive

103

HTTP/1.1	200	OK

Content-Type:	application/hal+json

{

		"_links":	{

				"self":	{"href":	"/books/42"}

		},

		"id":	42

		"title":	"The	HitchHiker's	Guide	to	the	Galaxy",

		"_embedded":	{

				"authors":	[

						{

								"_links":	{

										"self":	{"href":	"/author/12"}

								},

								"id":	12,

								"name":	"Douglas	Adams"

						}

]

		}

}

If	your	resources	might	be	used	in	multiple	API	endpoints,	you	may	find	that	creating	them
manually	everywhere	you	need	them	is	a	bit	of	a	chore!

One	of	the	most	powerful	pieces	of	zend-expressive-hal	is	that	it	provides	tools	for	mapping
object	types	to	how	they	should	be	represented.	This	is	done	via	a	metadata	map,	which
maps	class	types	to	zend-hydrator	extractors	for	the	purpose	of	generating	a	representation.
Additionally,	we	provide	tools	for	generating	link	URIs	based	on	defined	routes,	which	allows
metadata	to	provide	dynamic	link	generation	for	generated	resources.

I	won't	go	into	the	architecture	of	how	all	this	works,	as	there's	a	fair	amount	of	detail.	In
practice,	what	will	generally	happen	is:

You'll	define	a	metadata	map	in	your	application	configuration,	mapping	your	own
classes	to	details	on	how	to	represent	them.
You'll	compose	a		Zend\Expressive\Hal\ResourceGenerator		(which	will	use	a	metadata
map	based	on	your	configuration)	and	a		HalResponseFactory		in	your	middleware.
You'll	pass	an	object	to	the		ResourceGenerator		in	order	to	produce	a		HalResource	.
You'll	pass	the	generated		HalResource		to	your		HalResponseFactory		to	produce	a
response.

So,	as	an	example,	I	might	define	the	following	metadata	map	configuration:

namespace	Books;

use	Zend\Expressive\Hal\Metadata\MetadataMap;

REST	Representations	for	Expressive

104

use	Zend\Expressive\Hal\Metadata\RouteBasedCollectionMetadata;

use	Zend\Expressive\Hal\Metadata\RouteBasedResourceMetadata;

use	Zend\Hydreator\ObjectProperty	as	ObjectPropertyHydrator;

class	ConfigProvider

{

				public	function	__invoke()	:	array

				{

								return	[

												'dependencies'	=>	$this->getDependencies(),

												MetadataMap::class	=>	$this->getMetadataMap(),

];

				}

				public	function	getDependencies()	:	array

				{

								return	[/*	...	*/];

				}

				public	function	getMetadataMap()	:	array

				{

								return	[

												[

																'__class__'	=>	RouteBasedResourceMetadata::class,

																'resource_class'	=>	Author::class,

																'route'	=>	'author',

																'extractor'	=>	ObjectPropertyHydrator::class,

],

												[

																'__class__'	=>	RouteBasedCollectionMetadata::class,

																'collection_class'	=>	AuthorCollection::class,

																'collection_relation'	=>	'authors',

																'route'	=>	'authors',

],

												[

																'__class__'	=>	RouteBasedResourceMetadata::class,

																'resource_class'	=>	Book::class,

																'route'	=>	'book',

																'extractor'	=>	ObjectPropertyHydrator::class,

],

												[

																'__class__'	=>	RouteBasedCollectionMetadata::class,

																'collection_class'	=>	BookCollection::class,

																'collection_relation'	=>	'books',

																'route'	=>	'books',

],

];

				}

}

REST	Representations	for	Expressive

105

The	above	defines	metadata	for	authors	and	books,	both	as	individual	resources	as	well	as
collections.	This	allows	us	to	then	embed	an	author	as	a	property	of	a	book,	and	have	it
represented	as	an	embedded	resource!

From	there,	we	could	have	middleware	that	composes	both	a		ResourceGenerator		and	a
	HalResponseFactory		in	order	to	produce	representations:

namespace	Books\Action;

use	Books\Repository;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Expressive\Hal\HalResponseFactory;

use	Zend\Expressive\Hal\ResourceGenerator;

class	ListBooksAction	implements	MiddlewareInterface

{

				private	$repository;

				private	$resourceGenerator;

				private	$responseFactory;

				public	function	__construct(

								Repository	$repository,

								ResourceGenerator	$resourceGenerator,

								HalResponseFactory	$responseFactory

)	{

								$this->repository	=	$repository;

								$this->resourceGenerator	=	$resourceGenerator;

								$this->responseFactory	=	$responseFactory;

				}

				public	function	process(

								ServerRequestInterface	$request,

								DelegateInterface	$delegate

)	:	ResponseInterface	{

								/**	@var	\Books\BookCollection	$books	*/

								$books	=	$this->repository->fetchAll();

								return	$this->responseFactory->createResponse(

												$request,

												$this->resourceGenerator->fromObject($books)

);

				}

}

When	using	zend-expressive-hal	to	generate	your	responses,	the	majority	of	your
middleware	will	look	almost	exactly	like	this!

REST	Representations	for	Expressive

106

We	provide	a	number	of	other	features	in	the	package	as	well:

You	can	define	your	own	metadata	types,	and	strategy	classes	for	producing
representations	based	on	objects	matching	that	metadata.
You	can	specify	custom	mediatypes	for	your	generated	responses.
You	can	provide	your	own	link	generation	(useful	if	you're	not	using	Expressive).
You	can	provide	your	own	JSON	and	XML	renderers,	if	you	want	to	vary	the	output	for
some	reason	(e.g.,	always	adding	specific	links).

Use	Anywhere!
These	two	packages,	while	part	of	the	Zend	Framework	and	Expressive	ecosystems,	can	be
used	anywhere	you	use	PSR-7	middleware.	The	Problem	Details	component	provides	a
factory	for	producing	a	PSR-7	Problem	Details	response,	and	optionally	middleware	for
automating	reporting	of	errors.	The	HAL	component	provides	only	a	factory	for	producing	a
PSR-7	HAL	response,	and	a	number	of	tools	for	modeling	the	data	to	return	in	that
response.

As	such,	we	encourage	Slim,	Lumen,	and	other	PSR-7	framework	users	to	consider	using
these	components	in	your	API	applications	to	provide	standard,	robust,	and	extensible
representations	to	your	users!

For	more	details	and	examples,	visit	the	docs	for	each	component:

zend-problem-details	documentation:	https://docs.zendframework.com/zend-problem-
details
zend-expressive-hal	documentation:	https://docs.zendframework.com/zend-expressive-
hal

Footnotes

.	http://www.php-fig.org/psr/psr-7/	↩

.	https://tools.ietf.org/html/rfc7807	↩

.	https://tools.ietf.org/html/draft-kelly-json-hal-08	↩

.	https://tools.ietf.org/html/draft-michaud-xml-hal-01	↩

.	http://jsonapi.org	↩

.	http://amundsen.com/media-types/collection/format/	↩

.	http://hyperschema.org/mediatypes/siren	↩

1

2

3

4

5

6

7

8

REST	Representations	for	Expressive

107

https://docs.zendframework.com/zend-problem-details
https://docs.zendframework.com/zend-expressive-hal
http://www.php-fig.org/psr/psr-7/
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-michaud-xml-hal-01
http://jsonapi.org
http://amundsen.com/media-types/collection/format/
http://hyperschema.org/mediatypes/siren

.	https://github.com/zendframework/zend-problem-details	↩

.	https://github.com/zendframework/zend-expressive-hal	↩

.	http://www.php-fig.org/psr/psr-13/	↩

8

9

10

REST	Representations	for	Expressive

108

https://github.com/zendframework/zend-problem-details
https://github.com/zendframework/zend-expressive-hal
http://www.php-fig.org/psr/psr-13/

Copyright	note

Rogue	Wave	helps	thousands	of	global	enterprise	customers	tackle	the	hardest	and	most
complex	issues	in	building,	connecting,	and	securing	applications.	Since	1989,	our
platforms,	tools,	components,	and	support	have	been	used	across	financial	services,
technology,	healthcare,	government,	entertainment,	and	manufacturing,	to	deliver	value	and
reduce	risk.	From	API	management,	web	and	mobile,	embeddable	analytics,	static	and
dynamic	analysis	to	open	source	support,	we	have	the	software	essentials	to	innovate	with
confidence.

https://www.roguewave.com/

©	2017	Rogue	Wave	Software,	Inc.	All	rights	reserved

Copyright	note

109

https://www.roguewave.com/

	Introduction
	About the authors
	Specialized Response Implementations in Diactoros
	Emitting Responses with Diactoros
	Migrating to Expressive 2.0
	Expressive tooling
	Nested Middleware in Expressive
	Error Handling in Expressive
	Using Configuration-Driven Routes in Expressive
	Handling OPTIONS and HEAD Requests with Expressive
	Caching middleware
	Middleware authentication
	Authorize users using Middleware
	REST Representations for Expressive
	Copyright note

