

1.1

1.2

2.1

2.2

3.1

3.2

3.3

4.1

4.2

4.3

5.1

5.2

6.1

6.2

6.3

Table	of	Contents
Introduction

About	the	authors

Configuration
zend-config	for	all	your	configuration	needs

Manage	your	application	with	zend-config-aggregator

Data	Manipulation
Convert	objects	to	arrays	and	back	with	zend-hydrator

Scrape	Screens	with	zend-dom

Paginating	data	collections	with	zend-paginator

Log	and	Feeds
Logging	PHP	applications

Discover	and	Read	RSS	and	Atom	Feeds

Create	RSS	and	Atom	Feeds

Authentication	and	Authorization
Manage	permissions	with	zend-permissions-rbac

Manage	permissions	with	zend-permissions-acl

Web	Services
Implement	JSON-RPC	with	zend-json-server

Implement	an	XML-RPC	server	with	zend-xmlrpc

Implement	a	SOAP	server	with	zend-soap

2

7.1

7.2

7.3

7.4

7.5

8.1

8.2

9.1

Security
Context-specific	escaping	with	zend-escaper

Filter	input	using	zend-filter

Validate	input	using	zend-validator

Validate	data	using	zend-inputfilter

End-to-end	encryption	with	Zend	Framework	3

Deployment	and	Virtualization
Create	ZPKs	the	Easy	Way

Using	Laravel	Homestead	with	Zend	Framework	Projects

Copyright
Copyright	note

3

Zend	Framework	3	Cookbook
During	the	year	2017,	Matthew	Weier	O'Phinney	and	Enrico	Zimuel	started	a	series	of	blog
posts	on	the	offical	Zend	Framework	blog	covering	its	components.

Zend	Framework	is	composed	by	60+	components	covering	a	wide	range	of	functionality.
While	the	framework	has	typically	been	marketed	as	a	full-stack	MVC	framework,	the
individual	components	themselves	typically	work	independently	and	can	be	used	standalone
or	within	other	frameworks.	The	blog	posts	were	written	to	highlight	this	fact,	and
demonstrate	how	to	get	started	with	a	number	of	the	more	popular	and	useful	components.

We	hope	this	book	will	help	you	get	started	using	Zend	Framework	components,	no	matter
what	project	you	are	writing!

Enjoy	your	reading,
Matthew	Weier	O'Phinney	and	Enrico	Zimuel
Rogue	Wave	Software,	Inc.

Introduction

4

https://mwop.net/
https://www.zimuel.it/
https://www.roguewave.com/

About	the	authors

Matthew	Weier	O'Phinney	is	a	Principal	Engineer	at	Rogue	Wave	Software,	and	project
lead	for	the	Zend	Framework,	Apigility,	and	Expressive	projects.	He’s	responsible	for
architecture,	planning,	and	community	engagement	for	each	project,	which	are	used	by
thousands	of	developers	worldwide,	and	shipped	in	projects	from	personal	websites	to
multinational	media	conglomerates,	and	everything	in	between.	When	not	in	front	of	a
computer,	you'll	find	him	with	his	family	and	dogs	on	the	plains	of	South	Dakota.

For	more	information:

https://mwop.net/
https://www.roguewave.com/

Enrico	Zimuel	has	been	a	software	developer	since	1996.	He	works	as	a	Senior	Software
Engineer	at	Rogue	Wave	Software	as	a	core	developer	of	the	Zend	Framework,	Apigility,
and	Expressive	projects.	He	is	a	former	Researcher	Programmer	for	the	Informatics	Institute
of	the	University	of	Amsterdam.	Enrico	speaks	regularly	at	conferences	and	events,
including	TEDx	and	international	PHP	conferences.	He	is	also	the	co-founder	of	the	PHP
User	Group	of	Torino	(Italy).

For	more	information:

https://www.zimuel.it/

About	the	authors

5

https://mwop.net/
https://www.roguewave.com/
https://www.zimuel.it/

https://www.roguewave.com/
TEDx	presentation:	https://www.youtube.com/watch?v=SienrLY40-w
PHP	User	Group	of	Torino:	http://torino.grusp.org/

About	the	authors

6

https://www.roguewave.com/
https://www.youtube.com/watch?v=SienrLY40-w
http://torino.grusp.org/

Zend-config	for	all	your	configuration
needs
by	Matthew	Weier	O'Phinney

Different	applications	and	frameworks	have	different	opinions	about	how	configuration
should	be	created.	Some	prefer	XML,	others	YAML,	some	like	JSON,	others	like	INI,	and
some	even	stick	to	the	JavaProperties	format;	in	Zend	Framework,	we	tend	to	prefer	PHP
arrays,	as	each	of	the	other	formats	essentially	get	compiled	to	PHP	arrays	eventually
anyways.

At	heart,	though,	we	like	to	support	developer	needs,	whatever	they	may	be,	and,	as	such,
our	zend-config	component 	provides	ways	of	working	with	a	variety	of	configuration
formats.

Installation
zend-config	is	installable	via	Composer:

$	composer	require	zendframework/zend-config

The	component	has	two	dependencies:

zend-stdlib ,	which	provides	some	capabilities	around	configuration	merging.
psr/container ,	to	allow	reader	and	writer	plugin	support	for	the	configuration	factory.

Latest	version

This	article	covers	the	most	recently	released	version	of	zend-config,	3.1.0,	which
contains	a	number	of	features	such	as	PSR-11	support	that	were	not	previously
available.	If	you	are	using	Zend	Framework	MVC	layer,	you	should	be	able	to	safely
provide	the	constraint	 	̂ 2.6	||	^3.1	,	as	the	primary	APIs	remain	the	same.

Retrieving	configuration
Once	you've	installed	zend-config,	you	can	start	using	it	to	retrieve	and	access	configuration
files.	The	simplest	way	is	to	use		Zend\Config\Factory	,	which	provides	tools	for	loading
configuration	from	a	variety	of	formats,	as	well	as	capabilities	for	merging.

1

2
3

zend-config	for	all	your	configuration	needs

7

https://mwop.net/

If	you're	just	pulling	in	a	single	file,	use		Factory::fromFile()	:

use	Zend\Config\Factory;

$config	=	Factory::fromFile($path);

Far	more	interesting	is	to	use	multiple	files,	which	you	can	do	via		Factory::fromFiles()	.
When	you	do,	they	are	merged	into	a	single	configuration,	in	the	order	in	which	they	are
provided	to	the	factory.	This	is	particularly	interesting	using		glob()	:

use	Zend\Config\Factory;

$config	=	Factory::fromFiles(glob('config/autoload/*.*'));

This	method	supports	a	variety	of	formats:

PHP	files	returning	arrays	(.php		extension)
INI	files	(.ini		extension)
JSON	files	(.json		extension)
XML	files	(using	PHP's		XMLReader	;		.xml		extension)
YAML	files	(using	ext/yaml,	installable	via	PECL;		.yaml		extension)
JavaProperties	files	(.javaproperties		extension)

This	means	that	you	can	choose	the	configuration	format	you	prefer,	or	mix-and-match
multiple	formats,	if	you	need	to	combine	configuration	from	multiple	libraries!

Configuration	objects
By	default,		Zend\Config\Factory		will	return	PHP	arrays	for	the	merged	configuration.	Some
dependency	injection	containers	do	not	support	arrays	as	services,	however;	moreover,	you
may	want	to	pass	some	sort	of	structured	object	instead	of	a	plain	array	when	injecting
dependencies.

As	such,	you	can	pass	a	second,	optional	argument	to	each	of		fromFile()		and
	fromFiles()	,	a	boolean	flag.	When		true	,	it	will	return	a		Zend\Config\Config		instance,
which	implements		Countable	,		Iterator	,	and		ArrayAccess	,	allowing	it	to	look	and	act	like
an	array.

What	is	the	benefit?

First,	it	provides	property	overloading	to	each	configuration	key:

zend-config	for	all	your	configuration	needs

8

$debug	=	$config->debug	??	false;

Second,	it	offers	a	convenience	method,		get()	,	which	allows	you	to	specify	a	default	value
to	return	if	the	value	is	not	found:

$debug	=	$config->get('debug',	false);	//	Return	false	if	not	found

This	is	largely	obviated	by	the		??		ternary	shortcut	in	modern	PHP	versions,	but	very	useful
when	mocking	in	your	tests.

Third,	nested	sets	are	also	returned	as		Config		instances,	which	gives	you	the	ability	to	use
the	above		get()		method	on	a	nested	item:

if	(isset($config->expressive))	{

				$config	=	$config->get('expressive');	//	same	API!

}

Fourth,	you	can	mark	the		Config		instance	as	immutable!	By	default,	it	acts	just	like	array
configuration,	which	is,	of	course,	mutable.	However,	this	can	be	problematic	when	you	use
configuration	as	a	service,	because,	unlike	an	array,	a		Config		instance	is	passed	by
reference,	and	changes	to	values	would	then	propagate	to	any	other	services	that	depend
on	the	configuration.

Ideally,	you	wouldn't	be	changing	any	values	in	the	instance,	but		Zend\Config\Config		can
enforce	that	for	you:

$config->setReadOnly();	//	Now	immutable!

Further,	calling	this	will	mark	nested		Config		instances	as	read-only	as	well,	ensuring	data
integrity	for	the	entire	configuration	tree.

zend-config	for	all	your	configuration	needs

9

Read-only	by	default!

One	thing	to	note:	by	default,		Config		instances	are	read-only!	The	constructor	accepts
an	optional,	second	argument,	a	flag	indicating	whether	or	not	the	instance	allows
modifications,	and	the	value	is		false		by	default.	When	you	use	the		Factory		to	create
a		Config		instance,	it	never	enables	that	flag,	meaning	that	if	you	return	a		Config	
instance,	it	will	be	read-only.

If	you	want	a	mutable	instance	from	a		Factory	,	use	the	following	construct:

use	Zend\Config\Config;

use	Zend\Config\Factory;

$config	=	new	Config(Factory::fromFiles($files),	true);

Including	other	configuration
Most	of	the	configuration	reader	plugins	also	support	"includes":	directives	within	a
configuration	file	that	will	include	configuration	from	another	file.	(JavaProperties	is	the	only
configuration	format	we	support	that	does	not	have	this	functionality	included.)

For	instance:

INI	files	can	use	the	key		@include		to	include	another	file	relative	to	the	current	one;
values	are	merged	at	the	same	level:

webhost	=	'www.example.com'

@include	=	'database.ini'

For	XML	files,	you	can	use	XInclude:

<?xml	version="1.0"	encoding="utf-8">

<config	xmlns:xi="http://www.w3.org/2001/XInclude">

		<webhost>www.example.com</webhost>

		<xi:include	href="database.xml"/>

</config>

JSON	files	can	use	an		@include		key:

{

		"webhost":	"www.example.com",

		"@include":	"database.json"

}

zend-config	for	all	your	configuration	needs

10

http://www.w3.org/TR/xinclude/

YAML	also	uses	the		@include		notation:

webhost:	www.example.com

@include:	database.yaml

Choose	your	own	YAML
Out-of-the-box	we	support	the	YAML	PECL	extension	for	our	YAML	support.	However,	we
have	made	it	possible	to	use	alternate	parsers,	such	as	Spyc	or	the	Symfony	YAML
component,	by	passing	a	callback	to	the	reader's	constructor:

use	Symfony\Component\Yaml\Yaml	as	SymfonyYaml;

use	Zend\Config\Reader\Yaml	as	YamlConfig;

$reader	=	new	YamlConfig([SymfonfyYaml::class,	'parse']);

$config	=	$reader->fromFile('config.yaml');

Of	course,	if	you're	going	to	do	that,	you	could	just	use	the	original	library,	right?	But	what	if
you	want	to	mix	YAML	and	other	configuration	with	the		Factory		class?

There	are	two	ways	to	register	new	plugins.	One	is	to	create	an	instance	and	register	it	with
the	factory:

use	Symfony\Component\Yaml\Yaml	as	SymfonyYaml;

use	Zend\Config\Factory;

use	Zend\Config\Reader\Yaml	as	YamlConfig;

Factory::registerReader('yaml',	new	YamlConfig([SymfonyYaml::class,	'parse']));

Alternately,	you	can	provide	an	alternate	reader	plugin	manager.	You	can	do	that	by
extending		Zend\Config\StandaloneReaderPluginManager	,	which	is	a	barebones	PSR-11
container	for	use	as	a	plugin	manager:

zend-config	for	all	your	configuration	needs

11

http://www.php.net/manual/en/book.yaml.php

namespace	Acme;

use	Symfony\Component\Yaml\Yaml	as	SymfonyYaml;

use	Zend\Config\Reader\Yaml	as	YamlConfig;

use	Zend\Config\StandaloneReaderPluginManager;

class	ReaderPluginManager	extends	StandaloneReaderPluginManager

{

				/**

					*	@inheritDoc

					*/

				public	function	has($plugin)

				{

								if	(YamlConfig::class	===	$plugin

												||	'yaml'	===	strtolower($plugin)

)	{

												return	true;

								}

								return	parent::has($plugin);

				}

				/**

					*	@inheritDoc

					*/

				public	function	get($plugin)

				{

								if	(YamlConfig::class	!==	$plugin

												&&	'yaml'	!==	strtolower($plugin)

)	{

												return	parent::get($plugin);

								}

								return	new	YamlConfig([SymfonyYaml::class,	'parse']);

				}

}

Then	register	this	with	the		Factory	:

use	Acme\ReaderPluginManager;

use	Zend\Config\Factory;

Factory::setReaderPluginManager(new	ReaderPluginManager());

Processing	configuration
zend-config	also	allows	you	to	process	a		Zend\Config\Config		instance	and/or	an	individual
value.	Processors	perform	operations	such	as:

zend-config	for	all	your	configuration	needs

12

substituting	constant	values	within	strings
filtering	configuration	data
replacing	tokens	within	configuration
translating	configuration	values

Why	would	you	want	to	do	any	of	these	operations?

Consider	this:	deserialization	of	formats	other	than	PHP	cannot	take	into	account	PHP
constant	values	or	class	names!

While	this	may	work	in	PHP:

return	[

				Acme\Component::CONFIG_KEY	=>	[

								'host'	=>	Acme\Component::CONFIG_HOST,

								'dependencies'	=>	[

												'factories'	=>	[

																Acme\Middleware\Authorization::class	=>	Acme\Middleware\AuthorizationF

actory::class,

],

],

],

];

The	following	JSON	configuration	would	not:

{

				"Acme\\Component::CONFIG_KEY":	{

								"host":	"Acme\\Component::CONFIG_HOST"

								"dependencies":	{

												"factories":	{

																"Acme\\Middleware\\Authorization::class":	"Acme\\Middleware\\Authoriza

tionFactory::class"

												}

								}

				}

}

Enter	the		Constant		processor!

This	processor	looks	for	strings	that	match	constant	names,	and	replaces	them	with	their
values.	Processors	generally	only	work	on	the	configuration	values,	but	the		Constant	
processor	allows	you	to	opt-in	to	processing	the	keys	as	well.

Since	processing	modifies	the		Config		instance,	you	will	need	to	manually	create	an
instance,	and	then	process	it.	Let's	look	at	that:

zend-config	for	all	your	configuration	needs

13

use	Acme\Component;

use	Zend\Config\Config;

use	Zend\Config\Factory;

use	Zend\Config\Processor;

$config	=	new	Config(Factory::fromFile('config.json'),	true);

$processor	=	new	Processor\Constant();

$processor->enableKeyProcessing();

$processor->process($config);

$config->setReadOnly();

var_export($config->{Component::CONFIG_KEY}->dependencies->factories);

//	['Acme\Middleware\Authorization'	=>	'Acme\Middleware\AuthorizationFactory']

This	is	a	really	powerful	feature,	as	it	allows	you	to	add	more	verifications	and	validations	to
your	configuration	files,	regardless	of	the	format	you	use.

In	version	3.1.0	forward

The	ability	to	work	with	class	constants	and	process	keys	was	added	starting	with	the
3.1.0	version	of	zend-config.

Config	all	the	things!
This	post	covers	the	parsing	features	of	zend-config,	but	does	not	even	touch	on	another
major	capability:	the	ability	to	write	configuration!	We'll	leave	that	to	another	post.

In	terms	of	configuration	parsing,	zend-config	is	simple,	yet	powerful.	The	ability	to	process	a
number	of	common	configuration	formats,	utilize	configuration	includes,	and	process	keys
and	values	means	you	can	highly	customize	your	configuration	process	to	suit	your	needs	or
integrate	different	configuration	sources.

Get	more	information	from	the	zend-config	documentation .

Footnotes

.	https://docs.zendframework.com/zend-config/	↩

.	https://docs.zendframework.com/zend-stdlib/	↩

.	https://github.com/php-fig/container	↩

.	https://docs.zendframework.com/zend-config/	↩

4

1

2

3

4

zend-config	for	all	your	configuration	needs

14

https://docs.zendframework.com/zend-config/
https://docs.zendframework.com/zend-stdlib/
https://github.com/php-fig/container
https://docs.zendframework.com/zend-config/

zend-config	for	all	your	configuration	needs

15

Manage	your	application	with	zend-config-
aggregator
by	Matthew	Weier	O'Phinney

With	the	rise	of	PHP	middleware,	many	developers	are	creating	custom	application
architectures,	and	running	into	an	issue	many	frameworks	already	solve:	how	to	allow
runtime	configuration	of	the	application.

configuration	is	often	necessary,	even	in	custom	applications:

Some	configuration,	such	as	API	keys,	may	vary	between	environments.
You	may	want	to	substitute	services	between	development	and	production.
Some	code	may	be	developed	by	other	teams,	and	pulled	into	your	application
separately	(perhaps	via	Composer),	and	require	configuration.
You	may	be	writing	code	in	your	application	that	you	will	later	want	to	share	with	another
team,	and	recognize	it	should	provide	service	wiring	information	or	allow	for	dynamic
configuration	itself.

Faced	with	this	reality,	you	then	have	a	new	problem:	how	can	you	configure	your
application,	as	well	as	aggregate	configuration	from	other	sources?

As	part	of	the	Expressive	initiative,	we	now	offer	a	standalone	solution	for	you:	zend-config-
aggregator .

Installation
First,	you	will	need	to	install	zend-config-aggregator:

$	composer	require	zendframework/zend-config-aggregator

One	feature	of	zend-config-aggregator	is	the	ability	to	consume	multiple	configuration
formats	via	zend-config .	If	you	wish	to	use	that	feature,	you	will	also	need	to	install	that
package:

$	composer	require	zendframework/zend-config

Finally,	if	you	are	using	the	above,	and	want	to	parse	YAML	files,	you	will	need	to	install	the
YAML	PECL	extension .

1

2

3

4

Manage	your	application	with	zend-config-aggregator

16

https://mwop.net/

Configuration	providers
zend-config-aggregator	allows	you	to	aggregate	configuration	from	configuration	providers.
A	configuration	provider	is	any	PHP	callable	that	will	return	an	associative	array	of
configuration.

By	default,	the	component	provides	the	following	providers	out	of	the	box:

	Zend\ConfigAggregator\ArrayProvider	,	which	accepts	an	array	of	configuration	and
simply	returns	it.	This	is	primarily	useful	for	providing	global	defaults	for	your	application.
	Zend\ConfigAggregator\PhpFileProvider	,	which	accepts	a	glob	pattern	describing	PHP
files	that	each	return	an	associative	array.	When	invoked,	it	will	loop	through	each	file,
and	merge	the	results	with	what	it	has	previously	stored.
	Zend\ConfigAggregator\ZendConfigProvider	,	which	acts	similarly	to	the
	PhpFileProvider	,	but	which	can	aggregate	any	format	zend-config	supports,	including
INI,	XML,	JSON,	and	YAML.

More	interestingly,	however,	is	the	fact	that	you	can	write	providers	as	simple	invokable
objects:

namespace	Acme;

class	ConfigProvider

{

				public	function	__invoke()

				{

								return	[

												//	associative	array	of	configuration

];

				}

}

This	feature	allows	you	to	write	configuration	for	specific	application	features,	and	then	seed
your	application	with	it.	In	other	words,	this	feature	can	be	used	as	the	foundation	for	a
modular	architecture ,	which	is	exactly	what	we	did	with	Expressive!5

Manage	your	application	with	zend-config-aggregator

17

https://docs.zendframework.com/zend-config

Generators

You	may	also	use	invokable	classes	or	PHP	callables	that	define	generators	as
configuration	providers!	As	an	example,	the		PhpFileProvider		could	potentially	be
rewritten	as	follows:

use	Zend\Stdlib\Glob;

function	()	{

				foreach	(Glob::glob('config/*.php',	Glob::GLOB_BRACE)	as	$file)	{

								yield	include	$file;

				}

}

Aggregating	configuration
Now	that	you	have	configuration	providers,	you	can	aggregate	them.

For	the	purposes	of	this	example,	we'll	assume	the	following:

We	will	have	a	single	configuration	file,		config.php	,	at	the	root	of	our	application	which
will	aggregate	all	other	configuration.
We	have	a	number	of	configuration	files	under		config/	,	including	YAML,	JSON,	and
PHP	files.
We	have	a	third-party	"module"	that	exposes	the	class		Umbrella\ConfigProvider	.
We	have	developed	our	own	"module"	for	re-distribution	that	exposes	the	class
	Blanket\ConfigProvider	.

Typically,	you	will	want	aggregate	configuration	such	that	third-party	configuration	is	loaded
first,	with	application-specific	configuration	merged	last,	in	order	to	override	settings.

Let's	aggregate	and	return	our	configuration.

//	in	config.php:

use	Zend\ConfigAggregator\ConfigAggregator;

use	Zend\ConfigAggregator\ZendConfigProvider;

$aggregator	=	new	ConfigAggregator([

				\Umbrella\ConfigProvider::class,

				\Blanket\ConfigProvider::class,

				new	ZendConfigProvider('config/*.{json,yaml,php}'),

]);

return	$aggregator->getMergedConfig();

Manage	your	application	with	zend-config-aggregator

18

This	file	aggregates	the	third-party	configuration	provider,	the	one	we	expose	in	our	own
application,	and	then	aggregates	a	variety	of	different	configuration	files	in	order	to,	in	the
end,	return	an	associative	array	representing	the	merged	configuration!

Valid	config	profider	entries

You'll	note	that	the		ConfigAggregator		expects	an	array	of	providers	as	the	first
argument	to	the	constructor.	This	array	may	consist	of	any	of	the	following:

Any	PHP	callable	(functions,	invokable	objects,	closures,	etc.)	returning	an	array.
A	class	name	of	a	class	that	defines		__invoke()	,	and	which	requires	no
constructor	arguments.

This	latter	is	useful,	as	it	helps	reduce	operational	overhead	once	you	introduce
caching,	which	we	discuss	below.	The	above	example	demonstrates	this	usage.

zend-config	and	PHP	configuration

The	above	example	uses	only	the		ZendConfigProvider	,	and	not	the		PhpFileProvider	.
This	is	due	to	the	fact	that	zend-config	can	also	consume	PHP	configuration.

If	you	are	only	using	PHP-based	configuration	files,	you	can	use	the		PhpFileProvider	
instead,	as	it	does	not	require	additionally	installing	the	zendframework/zend-config
package.

Globbing	and	precedence

Globbing	works	as	it	does	on	most	*nix	systems.	As	such,	you	need	to	pay	particular
attention	to	when	you	use	patterns	that	define	alternatives,	such	as	the
	{json,yaml,php}		pattern	above.	In	such	cases,	all	JSON	files	will	be	aggregated,
followed	by	YAML	files,	and	finally	PHP	files.	If	you	need	them	to	aggregate	in	a
different	order,	you	will	need	to	change	the	pattern.

Caching
You	likely	do	not	want	to	aggregate	configuration	on	each	and	every	application	request,
particularly	if	doing	so	would	result	in	many	filesystem	hits.	Fortunately,	zend-config-
aggregator	also	has	built-in	caching	features.

To	enable	these	features,	you	will	need	to	do	two	things:

First,	you	need	to	provide	a	second	argument	to	the		ConfigAggregator		constructor,

Manage	your	application	with	zend-config-aggregator

19

specifying	the	path	to	the	cache	file	to	create	and/or	use.
Second,	you	need	to	enable	caching	in	your	configuration,	by	specifying	a	boolean
	true		value	for	the	key		ConfigAggregator::ENABLE_CACHE	.

One	common	strategy	is	to	enable	caching	by	default,	and	then	disable	it	via	environment-
specific	configuration.

We'll	update	the	above	example	now	to	enable	caching	to	the	file		cache/config.php	:

use	Zend\ConfigAggregator\ArrayProvider;

use	Zend\ConfigAggregator\ConfigAggregator;

use	Zend\ConfigAggregator\PhpFileProvider;

use	Zend\ConfigAggregator\ZendConfigProvider;

$aggregator	=	new	ConfigAggregator(

				[

								new	ArrayProvider([ConfigAggregator::ENABLE_CACHE	=>	true]),

								\Umbrella\ConfigProvider::class,

								\Blanket\ConfigProvider::class,

								new	ZendConfigProvider('config/{,*.}global.{json,yaml,php}'),

								new	PhpFileProvider('config/{,*.}local.php'),

],

				'cache/config.php'

);

return	$aggregator->getMergedConfig();

The	above	adds	an	initial	setting	that	enables	the	cache,	and	tells	it	to	cache	it	to
	cache/config.php	.

Notice	also	that	this	example	changes	the		ZendConfigProvider	,	and	adds	a
	PhpFileProvider		entry.	Let's	examine	these.

The		ZendConfigProvider		glob	pattern	now	looks	for	files	named		global		with	one	of	the
accepted	extensions,	or	those	named		*.global		with	one	of	the	accepted	extensions.	This
allows	us	to	segregate	configuration	that	should	always	be	present	from	environment-
specific	configuration.

We	then	add	a		PhpFileProvider		that	aggregates		local.php		and/or		*.local.php		files
specifically.	An	interesting	side-note	about	the	shipped	providers	is	that	if	no	matching	files
are	found,	the	provider	will	return	an	empty	array;	this	means	that	we	can	have	this
additional	provider	that	is	looking	for	separate	configurations	for	the	"local"	environment!
Because	this	provider	is	aggregated	last,	the	settings	it	exposes	will	override	any	others.

As	such,	if	we	want	to	disable	caching,	we	can	create	a	file	such	as		config/local.php		with
the	following	contents:

Manage	your	application	with	zend-config-aggregator

20

<?php

use	Zend\ConfigAggregator\ConfigAggregator;

return	[ConfigAggregator::ENABLE_CACHE	=>	false];

and	the	application	will	no	longer	cache	aggregated	configuration!

Clear	the	cache!

The	setting	outlined	above	is	used	to	determine	whether	the	configuration	cache	file
should	be	created	if	it	does	not	already	exist.	zend-config-aggregator,	when	provided
the	location	of	a	configuration	cache	file,	will	load	directly	from	it	if	the	file	is	present.

As	such,	if	you	make	the	above	configuration	change,	you	will	first	need	to	remove	any
cached	configuration:

$	rm	cache/config.php

This	can	even	be	made	into	a	Composer	script:

"scripts":	{

				"clear-config-cache":	"rm	cache/config.php"

}

Allowing	you	to	do	this:

$	composer	clear-config-cache

Which	allows	you	to	change	the	location	of	the	cache	file	without	needing	to	re-learn
the	location	every	time	you	need	to	clear	the	cache.

Auto-enabling	third-party	providers
Being	able	to	aggregate	providers	from	third-parties	is	pretty	stellar;	it	means	that	you	can
be	assured	that	configuration	the	third-party	code	expects	is	generally	present	—	with	the
exception	of	values	that	must	be	provided	by	the	consumer,	that	is!

However,	there's	one	minor	problem:	you	need	to	remember	to	register	these	configuration
providers	with	your	application,	by	manually	editing	your		config.php		file	and	adding	the
appropriate	entries.

6

Manage	your	application	with	zend-config-aggregator

21

Zend	Framework	solves	this	via	the	zf-component-installer	Composer	plugin .	If	your
package	is	installable	via	Composer,	you	can	add	an	entry	to	your	package	definition	as
follows:

"extra":	{

				"zf":	{

								"config-provider":	[

												"Umbrella\\ConfigProvider"

]

				}

}

If	the	end-user:

Has	required		zendframework/zend-component-installer		in	their	application	(as	either	a
production	or	development	dependency),	AND
has	the	config	aggregation	script	in		config/config.php	

then	the	plugin	will	prompt	you,	asking	if	you	would	like	to	add	each	of	the		config-provider	
entries	found	in	the	installed	package	into	the	configuration	script.

As	such,	for	our	example	to	work,	we	would	need	to	move	our	configuration	script	to
	config/config.php	,	and	likely	move	our	other	configuration	files	into	a	sub-directory:

cache/

				config.php

config/

				config.php

				autoload/

								blanket.global.yaml

								global.php

								umbrella.global.json

This	approach	is	essentially	that	taken	by	Expressive.

When	those	changes	are	made,	any	package	you	add	to	your	application	that	exposes
configuration	providers	will	prompt	you	to	add	them	to	your	configuration	aggregation,	and,	if
you	confirm,	will	add	them	to	the	top	of	the	script!

Final	notes
First,	we	would	like	to	thank	Mateusz	Tymek ,	whose	prototype	'expressive-config-manager'
project	became	zend-config-aggregator.	This	is	a	stellar	example	of	a	community	project
getting	adopted	into	the	framework!

6

7

Manage	your	application	with	zend-config-aggregator

22

Second,	this	approach	has	some	affinity	to	a	proposal	from	the	folks	who	brought	us	PSR-
11,	which	defines	the		ContainerInterface		used	within	Expressive	for	allowing	usage	of
different	dependency	injection	containers.	That	same	group	is	now	working	on	a	service
provider 	proposal	that	would	standardize	how	standalone	libraries	expose	services	to
containers;	we	recommend	looking	at	that	project	as	well.

We	hope	that	this	post	helps	spawn	ideas	for	configuring	your	next	project!

Footnotes

.	https://getcomposer.org	↩

.	https://github.com/zendframework/zend-config-aggregator	↩

.	https://docs.zendframework.com/zend-config/	↩

.	http://www.php.net/manual/en/book.yaml.php	↩

.	https://docs.zendframework.com/zend-expressive/features/modular-applications/	↩

.	https://docs.zendframework.com/zend-component-installer/	↩

.	http://mateusztymek.pl/	↩

.	https://github.com/container-interop/service-provider	↩

8

1

2

3

4

5

6

7

8

Manage	your	application	with	zend-config-aggregator

23

https://getcomposer.org
https://github.com/zendframework/zend-config-aggregator
https://docs.zendframework.com/zend-config/
http://www.php.net/manual/en/book.yaml.php
https://docs.zendframework.com/zend-expressive/features/modular-applications/
https://docs.zendframework.com/zend-component-installer/
http://mateusztymek.pl/
https://github.com/container-interop/service-provider

Convert	objects	to	arrays	and	back	with
zend-hydrator
by	Matthew	Weier	O'Phinney

APIs	are	all	the	rage	these	days,	and	a	tremendous	number	of	them	are	being	written	in
PHP.	When	APIs	were	first	gaining	popularity,	this	seemed	like	a	match	made	in	heaven:
query	the	database,	pass	the	results	to		json_encode()	,	and	voilà!	API	payload!	In	reverse,
it's		json_decode()	,	pass	the	data	to	the	database,	and	done!

Modern	day	professional	PHP,	however,	is	skewing	towards	usage	of	value	objects	and
entities,	but	we're	still	creating	APIs.	How	can	we	take	these	objects	and	create	our	API
response	payloads?	How	can	we	take	incoming	data	and	transform	it	into	the	domain
objects	we	need?

Zend	Framework's	answer	to	that	question	is	zend-hydrator.	Hydrators	can	extract	an
associative	array	of	data	from	an	object,	and	hydrate	an	object	from	an	associative	array	of
data.

Installation
As	with	our	other	components,	you	can	install	zend-hydrator	by	itself:

$	composer	require	zendframework/zend-hydrator

Out-of-the-box,	it	only	requires	zend-stdlib,	which	is	used	internally	for	transforming	iterators
to	associative	arrays.	However,	there	are	a	number	of	other	interesting,	if	optional,	features
that	require	other	components:

You	can	create	an	aggregate	hydrator	where	each	hydrator	is	responsible	for	a	subset
of	data.	This	requires	zend-eventmanager.
You	can	filter/normalize	the	keys/properties	of	data	using	naming	strategies;	these
require	zend-filter.
You	can	map	object	types	to	hydrators,	and	delegate	hydration	of	arbitrary	objects	using
the		DelegatingHydrator	.	This	feature	utilizes	the	provided		HydratorPluginManager	,
which	requires	zend-servicemanager.

In	our	examples	below,	we'll	be	demonstrating	naming	strategies	and	the	delegating
hydrator,	so	we	will	install	the	dependencies	those	need:

Convert	objects	to	arrays	and	back	with	zend-hydrator

24

https://mwop.net/

$	composer	require	zendframework/zend-filter	zendframework/zend-servicemanager

Objects	to	arrays	and	back	again
Let's	take	the	following	class	definition:

namespace	Acme;

class	Book

{

				private	$id;

				private	$title;

				private	$author;

				public	function	__construct(int	$id,	string	$title,	string	$author)

				{

								$this->id	=	$id;

								$this->title	=	$title;

								$this->author	=	$author;

				}

}

What	we	have	is	a	value	object,	with	no	way	to	publicly	grab	any	given	datum.	We	now	want
to	represent	it	in	our	API.	How	do	we	do	that?

The	answer	is	via	reflection,	and	zend-hydrator	provides	a	solution	for	that:

use	Acme\Book;

use	Zend\Hydrator\Reflection	as	ReflectionHydrator;

$book	=	new	Book(42,	'Hitchhiker\'s	Guide	to	the	Galaxy',	'Douglas	Adams');

$hydrator	=	new	ReflectionHydrator();

$data	=	$hydrator->extract($book);

We	now	have	an	array	representation	of	our		Book		instance!

Let's	say	that	somebody	has	just	submitted	a	book	via	a	web	form	or	an	API.	We	have	the
values,	but	want	to	create	a		Book		out	of	them.

Convert	objects	to	arrays	and	back	with	zend-hydrator

25

use	Acme\Book;

use	ReflectionClass;

use	Zend\Hydrator\Reflection	as	ReflectionHydrator;

$hydrator	=	new	ReflectionHydrator();

$book	=	$hydrator->hydrate(

				$incomingData,

				(new	ReflectionClass(Book::class))->newInstanceWithoutConstructor()

);

And	now	we	have	a		Book		instance!

The		newInstanceWithoutConstructor()		construct	is	necessary	in	this	case	because	our
class	has	required	constructor	arguments.	Another	possibility	is	to	provide	an	already
populated	instance,	and	hope	that	the	submitted	data	will	overwrite	all	data	in	the	class.
Alternately,	you	can	create	classes	that	have	optional	constructor	arguments.

Most	of	the	time,	it	can	be	as	simple	as	this:	create	an	appropriate	hydrator	instance,	and
use	either		extract()		to	get	an	array	representation	of	the	object,	or		hydrate()		to	create	an
instance	from	an	array	of	data.

We	provide	a	number	of	standard	implementations:

	Zend\Hydrator\ArraySerializable		works	with		ArrayObject		implementations.	It	will	also
hydrate	any	object	implementing	either	the	method		exchangeArray()		or		populate()	,
and	extract	from	any	object	implementing		getArrayCopy()	.
	Zend\Hydrator\ClassMethods		will	use	setter	and	getter	methods	to	populate	and	extract
objects.	It	also	understands		has*()		and		is*()		methods	as	getters.
	Zend\Hydrator\ObjectProperty		will	use	public	instance	properties.
	Zend\Hydrator\Reflection		can	extract	and	populate	instance	properties	of	any	visibility.

Filtering	values
Since	a	common	rationale	for	extracting	data	from	objects	is	to	create	payloads	for	APIs,
you	may	find	there	is	data	in	your	object	you	do	not	want	to	represent.

zend-hydrator	provides	a		Zend\Hydrator\Filter\FilterInterface		for	accomplishing	this.
Filters	implement	the	following:

Convert	objects	to	arrays	and	back	with	zend-hydrator

26

namespace	Zend\Hydrator\Filter;

interface	FilterInterface

{

				/**

					*	@param	string	$property

					*	@return	bool

				public	function	filter($property);

}

If	a	filter	returns	a	boolean		true	,	the	value	is	kept;	otherwise,	it	is	omitted.

A		FilterComposite		implementation	allows	attaching	multiple	filters;	each	property	is	then
checked	against	each	filter.	(This	class	also	allows	attaching	standard	PHP	callables	for
filters,	instead	of		FilterInterface		implementations.)	A		FilterEnabledInterface		allows	a
hydrator	to	indicate	it	composes	filters.	Tying	it	together,	all	shipped	hydrators	inherit	from	a
common	base	that	implements		FilterEnabledInterface		by	composing	a		FilterComposite	,
which	means	that	you	can	use	filters	immediately	in	a	standard	fashion.

As	an	example,	let's	say	we	have	a		User		class	that	has	a		password		property;	we	clearly	do
not	want	to	return	the	password	in	our	payload,	even	if	it	is	properly	hashed!	Filters	to	the
rescue!

use	Zend\Hydrator\ObjectProperty	as	ObjectPropertyHydrator;

$hydrator	=	new	ObjectPropertyHydrator();

$hydrator->addFilter('password',	function	($property)	{

				return	$property	!==	'password';

});

$data	=	$hydrator->extract($user);

Some	hydrators	actually	use	filters	internally	in	order	to	do	their	work.	As	an	example,	the
	ClassMethods		hydrator	composes	the	following	by	default:

	IsFilter	,	to	identify	methods	beginning	with		is	,	such	as		isTransaction()	.
	HasFilter	,	to	identify	methods	beginning	with		has	,	such	as		hasAuthor()	.
	GetFilter	,	to	identify	methods	beginning	with		get	,	such	as		getTitle()	.
	OptionalParametersFilter	,	to	ensure	any	given	matched	method	can	be	executed
without	requiring	any	arguments.

This	latter	point	brings	up	an	interesting	feature:	since	hydration	runs	each	potential	property
name	through	each	filter,	you	may	need	to	setup	rules.	For	example,	with	the		ClassMethods	
hydrator,	a	given	method	name	is	valid	if	the	following	condition	is	met:

Convert	objects	to	arrays	and	back	with	zend-hydrator

27

(matches	"is"	||	matches	"has"	||	matches	"get")	&&	matches	"optional	parameters"

As	such,	when	calling		addFilter()	,	you	can	specify	an	optional	third	argument:	a	flag
indicating	whether	to		OR		or		AND		the	given	filter	(using	the	values
	FilterComposite::CONDITION_OR		or		FilterComposite::FILTER_AND);	the	default	is	to		OR		the
new	filter.

Filtering	is	very	powerful	and	flexible.	If	you	remember	only	two	things	about	filters:

They	only	operate	during	extraction.
They	can	only	be	used	to	determine	what	values	to	keep	in	the	extracted	data	set.

Strategies
What	if	you	wanted	to	alter	the	values	returned	during	extraction	or	hydration?	zend-hydrator
provides	these	features	via	strategies.

A	strategy	provides	functionality	both	for	extracting	and	hydrating	a	value,	and	simply
transforms	it;	think	of	strategies	as	normalization	filters.	Each	implements
	Zend\Hydrator\Strategy\StrategyInterface	:

namespace	Zend\Hydrator\Strategy;

interface	StrategyInterface

{

				public	function	extract($value;)

				public	function	hydrate($value;)

}

Like	filters,	a		StrategyEnabledInterface		allows	a	hydrator	to	indicate	it	accepts	strategies,
and	the		AbstractHydrator		implements	this	interface,	allowing	you	to	use	strategies	out	of
the	box	with	the	shipped	hydrators.

Using	our	previous		User		example,	we	could,	instead	of	omitting	the		password		value,
instead	return	a	static		********		value;	a	strategy	could	allow	us	to	do	that.	Data	submitted
would	be	instead	hashed	using		password_hash()	:

Convert	objects	to	arrays	and	back	with	zend-hydrator

28

namespace	Acme;

use	Zend\Hydrator\Strategy\StrategyInterface;

class	PasswordStrategy	implements	StrategyInterface

{

				public	function	extract($value)

				{

								return	'********';

				}

				public	function	hydrate($value)

				{

								return	password_hash($value);

				}

}

We	would	then	extract	our	data	as	follows:

use	Acme\PasswordStrategy;

use	Zend\Hydrator\ObjectProperty	as	ObjectPropertyHydrator;

$hydrator	=	new	ObjectPropertyHydrator();

$hydrator->addStrategy('password',	new	PasswordStrategy());

$data	=	$hydrator->extract($user);

zend-hydrator	ships	with	a	number	of	really	useful	strategies	for	common	data:

	BooleanStrategy		will	convert	booleans	into	other	values	(such	as		0		and		1	,	or	the
strings		true		and		false)	and	vice	versa,	according	to	a	map	you	provide	to	the
constructor.
	ClosureStrategy		allows	you	to	provide	callbacks	for	each	of	extraction	and	hydration,
allowing	you	to	forego	the	need	to	create	a	custom	strategy	implementation.
	DateTimeFormatterStrategy		will	convert	between	strings	and		DateTime		instances.
	ExplodeStrategy		is	a	wrapper	around		implode		and		explode()	,	and	expects	a
delimiter	to	its	constructor.
	StrategyChain		allows	you	to	compose	multiple	strategies;	the	return	value	of	each	is
passed	as	the	value	to	the	next,	providing	a	filter	chain.

Filtering	property	names
We	can	now	filter	properties	to	omit	from	our	representations,	as	well	as	filter	or	normalize
the	values	we	ultimately	want	to	represent.	What	about	the	property	names,	though?

Convert	objects	to	arrays	and	back	with	zend-hydrator

29

In	PHP,	we	often	use		camelCase		to	represent	properties,	but		snake_case		is	typically	more
accepted	for	APIs.	Additionally,	what	about	when	we	use	getters	for	our	values?	We	likely
don't	want	to	use	the	actual	method	name	as	the	property	name!

For	this	reason,	zend-hydrator	provides	naming	strategies.	These	work	just	like	strategies,
but	instead	of	working	on	the	value,	they	work	on	the	property	name.	Like	both	filters	and
strategies,	an	interface,		NamingStrategyEnabledInterface	,	allows	a	hydrator	to	indicate	can
accept	a	naming	strategy,	and	the		AbstractHydrator		implements	that	interface,	to	allow	out
of	the	box	usage	of	naming	strategies	on	the	shipped	hydrators.

As	an	example,	let's	consider	the	following	class:

namespace	Acme;

class	Transaction

{

				public	$isPublished;

				public	$publishedOn;

				public	$updatedOn;

}

Let's	now	extract	an	instance	of	that	class:

use	Acme\Transaction;

use	Zend\Hydrator\NamingStrategy\UnderscoreNamingStrategy;

use	Zend\Hydrator\ObjectProperty	as	ObjectPropertyHydrator;

$hydrator	=	new	ObjectPropertyHydrator();

$hydrator->setNamingStrategy(new	UnderscoreNamingStrategy());

$data	=	$hydrator->extract($transaction);

The	extracted	data	will	now	have	the	keys		is_published	,		published_on	,	and		updated_on	!

This	is	useful	if	you	know	all	your	properties	will	be	camelCased,	but	what	if	you	have	other
needs?	For	instance,	what	if	you	want	to	rename		isPublished		to		published		instead?

A		CompositeNamingStrategy		class	allows	you	to	do	exactly	that.	It	accepts	an	associative
array	of	object	property	names	mapped	to	the	naming	strategy	to	use	with	it.	So,	as	an
example:

Convert	objects	to	arrays	and	back	with	zend-hydrator

30

use	Acme\Transaction;

use	Zend\Hydrator\NamingStrategy\CompositeNamingStrategy;

use	Zend\Hydrator\NamingStrategy\MapNamingStrategy;

use	Zend\Hydrator\NamingStrategy\UnderscoreNamingStrategy;

use	Zend\Hydrator\ObjectProperty	as	ObjectPropertyHydrator;

$underscoreNamingStrategy	=	new	UnderscoreNamingStrategy();

$namingStrategy	=	new	CompositeNamingStrategy([

				'isPublished'	=>	new	MapNamingStrategy(['published'	=>	'isPublished']),

				'publishedOn'	=>	$underscoreNamingStrategy,

				'updatedOn'			=>	$underscoreNamingStrategy,

]);

$hydrator	=	new	ObjectPropertyHydrator();

$hydrator->setNamingStrategy($namingStrategy);

$data	=	$hydrator->extract($transaction);

Our	data	will	now	have	the	keys		published	,		published_on	,	and		updated_on	!

Unfortunately,	if	we	try	and	hydrate	using	our		CompositeNamingStrategy	,	we'll	run	into	issues;
the		CompositeNamingStrategy		does	not	know	how	to	map	the	normalized,	extracted	property
names	to	those	the	object	accepts	because	it	maps	a	property	name	to	the	naming	strategy.
So,	to	fix	that,	we	need	to	add	the	reverse	keys:

$mapNamingStrategy	=	new	MapNamingStrategy(['published'	=>	'isPublished']);

$underscoreNamingStrategy	=	new	UnderscoreNamingStrategy();

$namingStrategy	=	new	CompositeNamingStrategy([

				//	Extraction:

				'isPublished'		=>	$mapNamingStrategy,

				'publishedOn'		=>	$underscoreNamingStrategy,

				'updatedOn'				=>	$underscoreNamingStrategy,

				//	Hydration:

				'published'				=>	$mapNamingStrategy,

				'published_on'	=>	$underscoreNamingStrategy,

				'updated_on'			=>	$underscoreNamingStrategy,

]);

Delegation
Sometimes	we	want	to	compose	a	single	hydrator,	but	don't	know	until	runtime	what	objects
we'll	be	extracting	or	hydrating.	A	great	example	of	this	is	when	using	zend-db's
	HydratingResultSet	,	where	the	hydrator	may	vary	based	on	the	table	from	which	we	pull

Convert	objects	to	arrays	and	back	with	zend-hydrator

31

values.	Other	times,	we	may	want	to	use	the	same	basic	hydrator	type,	but	compose
different	filters,	strategies,	or	naming	strategies	based	on	the	object	we	wish	to	hydrate	or
extract.

To	accommodate	these	scenarios,	we	have	two	features.	The	first	is
	Zend\Hydrator\HydratorPluginManager	.	This	is	a	specialized
	Zend\ServiceManager\AbstractPluginManager		for	retrieving	different	hydrator	instances.	When
used	in	zend-mvc	or	Expressive	applications,	it	can	be	configured	via	the		hydrators	
configuration	key,	which	uses	the	semantics	for	zend-servicemanager,	and	maps	the	service
to		HydratorManager	.

As	an	example,	we	could	have	the	following	configuration:

return	[

				'hydrators'	=>	[

								'factories'	=>	[

												'Acme\BookHydrator'	=>	\Acme\BookHydratorFactory::class,

												'Acme\AuthorHydrator'	=>	\Acme\AuthorHydratorFactory::class,

],

],

];

Manually	configuring	the	HydratorPluginManager

You	can	also	use	the		HydratorPluginManager		programmatically:

$hydrators	=	new	HydratorPluginManager();

$hydrators->setFactory('Acme\BookHydrator',	\Acme\BookHydratorFactory::class);

$hydrators->setFactory('Acme\AuthorHydrator',	\Acme\AuthorHydratorFactory::class)

;

The	factories	might	create	standard	hydrator	instances,	but	configure	them	differently:

Convert	objects	to	arrays	and	back	with	zend-hydrator

32

namespace	Acme;

use	Psr\Container\ContainerInterface;

use	Zend\Hydrator\ObjectProperty;

use	Zend\Hydrator\NamingStrategy\CompositeNamingStrategy;

use	Zend\Hydrator\NamingStrategy\UnderscoreNamingStrategy;

use	Zend\Hydrator\Strategy\DateTimeFormatterStrategy;

class	BookHydratorFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$hydrator	=	new	ObjectProperty();

								$hydrator->addFilter('isbn',	function	($property)	{

												return	$property	!==	'isbn';

								});

								$hydrator->setNamingStrategy(new	CompositeNamingStrategy([

												'publishedOn'	=>	new	UnderscoreNamingStrategy(),

]));

								$hydrator->setStrategy(new	CompositeNamingStrategy([

												'published_on'	=>	new	DateTimeFormatterStrategy(),

]));

								return	$hydrator;

				}

}

class	AuthorHydratorFactory

{

				public	function	__invoke(ContainerInterface	$container)

				{

								$hydrator	=	new	ObjectProperty();

								$hydrator->setNamingStrategy(new	UnderscoreNamingStrategy());

								return	$hydrator;

				}

}

You	could	then	compose	the		HydratorManager		service	in	your	own	class,	and	pull	these
hydrators	in	order	to	extract	or	hydrate	instances:

$bookData	=	$hydrators->get('Acme\BookHydrator')->extract($book);

$authorData	=	$hydrators->get('Acme\AuthorHydrator')->extract($author);

The		DelegatingHydrator		works	by	composing	a		HydratorPluginManager		instance,	but	has
an	additional	semantic:	it	uses	the	class	name	of	the	object	it	is	extracting,	or	the	object	type
to	hydrate,	as	the	service	name	to	pull	from	the		HydratorPluginManager	.	As	such,	we	would
change	our	configuration	of	the	hydrators	as	follows:

Convert	objects	to	arrays	and	back	with	zend-hydrator

33

return	[

				'hydrators'	=>	[

								'factories'	=>	[

												\Acme\Book::class	=>	\Acme\BookHydratorFactory::class,

												\Acme\Author::class	=>	\Acme\AuthorHydratorFactory::class,

],

],

];

Additionally,	we	need	to	tell	our	application	about	the		DelegatingHydrator	:

//	zend-mvc	applications:

return	[

				'service_manager'	=>	[

								'factories'	=>	[

												\Zend\Hydrator\DelegatingHydrator::class	=>	\Zend\Hydrator\DelegatingHydra

torFactory::class

]

],

];

//	Expressive	applications

return	[

				'dependencies'	=>	[

								'factories'	=>	[

												\Zend\Hydrator\DelegatingHydrator::class	=>	\Zend\Hydrator\DelegatingHydra

torFactory::class

]

],

];

Manually	creating	the	DelegatingHydrator

You	can	instantiate	the		DelegatingHydrator		manually;	when	you	do,	you	pass	it	the
`HydratorPluginManager	instance.

use	Zend\Hydrator\DelegatingHydrator;

use	Zend\Hydrator\HydratorPluginManager;

$hydrators	=	new	HydratorPluginManager();

//	...	configure	the	plugin	manager	...

$hydrator	=	new	DelegatingHydrator($hydrators);

Technically	speaking,	the		DelegatingHydrator		can	accept	any	PSR-11 	container	to	its
constructor.

1

Convert	objects	to	arrays	and	back	with	zend-hydrator

34

From	there,	we	can	inject	the		DelegatingHydrator		into	any	of	our	own	classes,	and	use	it	to
extract	or	hydrate	objects:

$bookData	=	$hydrator->extract($book);

$authorData	=	$hydrator->extract($author);

This	feature	can	be	quite	powerful,	as	it	allows	you	to	create	the	hydration	and	extraction
"recipes"	for	all	of	your	objects	within	their	own	factories,	ensuring	that	anywhere	you	need
them,	they	operate	exactly	the	same.	It	also	means	that	for	testing	purposes,	you	can	simply
mock	the		HydratorInterface		(or	its	parents,		ExtractionInterface		and		HydrationInterface)
instead	of	composing	a	concrete	instance.

Other	features
While	we've	tried	to	cover	the	majority	of	the	functionality	zend-hydrator	provides	in	this
article,	it	has	a	number	of	other	useful	features:

The		AggregateHydrator		allows	you	to	handle	complex	objects	that	implement	multiple
common	interfaces	and/or	have	nested	instances	composed;	it	even	exposes	events
you	can	listen	to	during	each	of	extraction	and	hydration.	You	can	read	more	about	it	in
the	documentation .
You	can	write	objects	that	provide	and	expose	their	own	filters	by	implementing	the
	Zend\Hydrator\Filter\FilterProviderInterface	.
You	can	hydrate	or	extract	arrays	of	objects	by	implementing
	Zend\Hydrator\Iterator\HydratingIteratorInterface	.

The	component	can	be	seen	in	use	in	a	number	of	places:	zend-db	provides	a
	HydratingResultSet		that	leverage	the		HydratorPluginManager		in	order	to	hydrate	objects
pulled	from	a	database.	Apigility	uses	the	feature	to	extract	data	for	Hypertext	Application
Language	(HAL)	payloads.	We've	even	seen	developers	creating	custom	ORMs	for	their
application	using	the	feature!

What	can	zend-hydrator	help	you	do	today?

Footnotes

.	https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-11-container.md
↩

.	https://docs.zendframework.com/zend-hydrator/aggregate/	↩

2

1

2

Convert	objects	to	arrays	and	back	with	zend-hydrator

35

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-11-container.md
https://docs.zendframework.com/zend-hydrator/aggregate/

Convert	objects	to	arrays	and	back	with	zend-hydrator

36

Scrape	Screens	with	zend-dom
by	Matthew	Weier	O'Phinney

Even	in	this	day-and-age	of	readily	available	APIs	and	RSS/Atom	feeds,	many	sites	offer
none	of	them.	How	do	you	get	at	the	data	in	those	cases?	Through	the	ancient	internet	art	of
screen	scraping.

The	problem	then	becomes:	how	do	you	get	at	the	data	you	need	in	a	pile	of	HTML	soup?
You	could	use	regular	expressions	or	any	of	the	various	string	functions	in	PHP.	All	of	these
are	easily	subject	to	error,	though,	and	often	require	some	convoluted	code	to	get	at	the	data
of	interest.

Alternately,	you	could	treat	the	HTML	as	XML,	and	use	the	DOM	extension ,	which	is
typically	built-in	to	PHP.	Doing	so,	however,	requires	more	than	a	passing	familiarity	with
XPath ,	which	is	something	of	a	black	art.

If	you	use	JavaScript	libraries	or	write	CSS	fairly	often,	you	may	be	familiar	with	CSS
selectors,	which	allow	you	to	target	either	specific	nodes	or	groups	of	nodes	within	an	HTML
document.	These	are	generally	rather	intuitive:

jQuery('section.slide	h2').each(function	(node)	{

		alert(node.textContent);

});

What	if	you	could	do	that	with	PHP?

Introducing	zend-dom
zend-dom 	provides	CSS	selector	capabilities	for	PHP,	via	the		Zend\Dom\Query		class,
including:

element	types	(h2	,		span	,	etc.)
class	attributes	(.error	,		.next	,	etc.)
element	identifiers	(#nav	,		#main	,	etc.)
arbitrary	element	attributes	(div[onclick="foo"]),	including	word	matches
(div[role~="navigation"])	and	substring	matches	(div[role*="complement"])
descendents	(div	.foo	span)

While	it	does	not	implement	the	full	spectrum	of	CSS	selectors,	it	does	provide	enough	to
generally	allow	you	to	get	at	the	information	you	need	within	a	page.

1

2

3

Scrape	Screens	with	zend-dom

37

https://mwop.net/

Example:	retrieving	a	navigation	list
As	an	example,	let's	fetch	the	navigation	list	from	the		Zend\Dom\Query		documentation	page
itself:

use	Zend\Dom\Query;

$html	=	file_get_contents('https://docs.zendframework.com/zend-dom/query/');

$query	=	new	Query($html);

$results	=	$query->execute('ul.bs-sidenav	li	a');

printf("Received	%d	results:\n",	count($results));

foreach	($results	as	$result)	{

				printf("-	%s\n",	$result->getAttribute('href'),	$result->textContent);

}

The	above	queries	for		ul.bs-sidenav	li	a		—	in	other	words,	all	links	within	list	items	of	the
sidenav	unordered	list.

When	you		execute()		a	query,	you	are	returned	a		Zend\Dom\NodeList		instance,	which
decorates	a	DOMNodeList 	in	order	to	provide	features	such	as		Countable	,	and	access	to
the	original	query	and	document.	In	the	example	above,	we		count()		the	results,	and	then
loop	over	them.

Each	item	in	the	list	is	a	DOMNode ,	giving	you	access	to	any	attributes,	the	text	content,
and	any	child	elements.	In	our	case,	we	access	the		href		attribute	(the	link	target),	and
report	the	text	content	(the	link	text).

The	results	are:

Received	3	results:

-	[#querying-html-and-xml-documents](Querying	HTML	and	XML	Documents)

-	[#theory-of-operation](Theory	of	Operation)

-	[#methods-available](Methods	Available)

Other	uses
Another	use	case	is	testing.	When	you	have	classes	that	return	HTML,	or	if	you	want	to
execute	requests	and	test	the	generated	output,	you	often	don't	want	to	test	exact	contents,
but	rather	look	for	specific	data	or	fragments	within	the	document.

4

5

6 7

Scrape	Screens	with	zend-dom

38

We	provide	these	capabilities	for	zend-mvc 	applications	via	the	zend-test	component ,
which	provides	a	number	of	CSS	selector	assertions 	for	use	in	querying	the	content
returned	in	your	MVC	responses.	Having	these	capabilities	allows	testing	for	dynamic
content	as	well	as	static	content,	providing	a	number	of	vectors	for	ensuring	application
quality.

Start	scraping!
We	hope	you	can	appreciate	the	powerful	capabilities	of	this	component!	We	have	used	this
functionality	in	a	variety	of	ways,	from	testing	applications	to	creating	feeds	based	on
content	differences	in	web	pages,	to	finding	and	retrieving	image	URIs	from	pages.

Get	more	information	from	the	zend-dom	documentation .

Footnotes

.	http://php.net/dom	↩

.	https://en.wikipedia.org/wiki/XPath	↩

.	https://docs.zendframework.com/zend-dom/	↩

.	http://php.net/class.domnodelist	↩

.	http://php.net/class.domnode	↩

.	https://docs.zendframework.com/zend-mvc/	↩

.	https://docs.zendframework.com/zend-test/	↩

.	https://docs.zendframework.com/zend-test/assertions/#css-selector-assertions	↩

.	https://docs.zendframework.com/zend-dom/	↩

6 7
8

9

1

2

3

4

5

6

7

8

9

Scrape	Screens	with	zend-dom

39

http://php.net/dom
https://en.wikipedia.org/wiki/XPath
https://docs.zendframework.com/zend-dom/
http://php.net/class.domnodelist
http://php.net/class.domnode
https://docs.zendframework.com/zend-mvc/
https://docs.zendframework.com/zend-test/
https://docs.zendframework.com/zend-test/assertions/#css-selector-assertions
https://docs.zendframework.com/zend-dom/

Paginating	data	collections	with	zend-
paginator
by	Enrico	Zimuel

zend-paginator 	is	a	flexible	component	for	paginating	collections	of	data	and	presenting
that	data	to	users.

Pagination 	is	a	standard	UI	solution	to	manage	the	visualization	of	lists	of	items,	like	a	list
of	posts	in	a	blog	or	a	list	of	products	in	an	online	store.

zend-paginator	is	very	popular	among	Zend	Framework	developers,	and	it's	often	used	with
zend-view ,	thanks	to	the	pagination	control	view	helper	zend-view	provides.

It	can	be	used	also	with	other	template	engines.	In	this	article,	I	will	demonstrate	how	to	use
it	with	Plates .

Usage	of	zend-paginator
The	component	can	be	installed	via	Composer:

$	composer	require	zendframework/zend-paginator

To	consume	the	paginator	component,	we	need	a	collection	of	items.	zend-paginator	ships
with	several	different	adapters	for	common	collection	types:

ArrayAdapter,	which	works	with	PHP	arrays;
Callback,	which	allows	providing	callbacks	for	obtaining	counts	of	items	and	lists	of
items;
DbSelect,	to	work	with	a	SQL	collection	(using	zend-db);
DbTableGateway,	to	work	with	a	Table	Data	Gateway	(using	the	TableGateway	feature
from	zend-db.
Iterator,	to	work	with	any		Iterator	 	instance.

If	your	collection	does	not	fit	one	of	these	adapters,	you	can	create	a	custom	adapter.	To	do
so,	you	will	need	to	implement		Zend\Paginator\Adapter\AdapterInterface	,	which	defines	two
methods:

	count()	:	int	

	getItems(int	$offset,	int	$itemCountPerPage)	:	array	

1

2

3

4

5

6

Paginating	data	collections	with	zend-paginator

40

https://www.zimuel.it

Each	adapter	needs	to	return	the	total	number	of	items	in	the	collection,	implementing	the
	count()		method,	and	a	portion	(a	page)	of	items	starting	from		$offset		position	with	a	size
of		$itemCountPerPage		per	page.

With	these	two	methods,	we	can	use	zend-paginator	with	any	type	of	collection.

For	instance,	imagine	we	need	to	paginate	a	collection	of	blog	posts	and	we	have	a		Posts	
class	that	manages	all	the	posts.	We	can	implement	an	adapter	like	this:

require	'vendor/autoload.php';

use	Zend\Paginator\Adapter\AdapterInterface;

use	Zend\Paginator\Paginator;

use	Zend\Paginator\ScrollingStyle\Sliding;

class	Posts	implements	AdapterInterface

{

				private	$posts	=	[];

				public	function	__construct()

				{

						//	Read	posts	from	file/database/whatever

				}

				public	function	count()

				{

								return	count($this->posts);

				}

				public	function	getItems($offset,	$itemCountPerPage)

				{

								return	array_slice($this->posts,	$offset,	$itemCountPerPage);

				}

}

$posts	=	new	Posts();

$paginator	=	new	Paginator($posts);

Paginator::setDefaultScrollingStyle(new	Sliding());

$paginator->setCurrentPageNumber(1);

$paginator->setDefaultItemCountPerPage(8);

foreach	($paginator	as	$post)	{

		//	Iterate	on	each	post

}

$pages	=	$paginator->getPages();

var_dump($pages);

Paginating	data	collections	with	zend-paginator

41

In	this	example,	we	created	a	zend-paginator	adapter	using	a	custom		Posts		class.	This
class	stores	the	collection	of	posts	using	a	private	array	($posts).	This	adapter	is	then
passed	to	an	instance	of		Paginator	.

When	creating	a		Paginator	,	we	need	to	configure	its	behavior.	The	first	setting	is	the
scrolling	style.	In	the	example	above,	we	used	the	Sliding 	style,	a	Yahoo!-like	scrolling	style
that	positions	the	current	page	number	as	close	as	possible	to	the	center	of	the	page	range.

Note:	the		Sliding		scrolling	style	is	the	default	style	used	by	zend-paginator.	We	need
to	set	it	explicitly	using		Paginator::setDefaultScrollingStyle()		only	if	we	do	not	use
zend-servicemanager 	as	a	plugin	manager.	Otherwise,	the	scrolling	style	is	loaded	by
default	from	the	plugin	manager.

The	other	two	configuration	values	are	the	current	page	number	and	the	number	of	items
per	page.	In	the	example	above,	we	started	from	page	1,	and	we	count	8	items	per	page.

We	can	then	iterate	on	the		$paginator		object	to	retrieve	the	post	of	the	current	page	in	the
collection.

At	the	end,	we	can	retrieve	the	information	regarding	the	previous	page,	the	next	page,	the
total	items	in	the	collection,	and	more.	To	get	these	values	we	need	to	call	the		getPages()	
method.	We	will	obtain	an	object	like	this:

7

8

Paginating	data	collections	with	zend-paginator

42

object(stdClass)#81	(13)	{

		["pageCount"]=>

		int(3)

		["itemCountPerPage"]=>

		int(8)

		["first"]=>

		int(1)

		["current"]=>

		int(1)

		["last"]=>

		int(3)

		["next"]=>

		int(2)

		["pagesInRange"]=>

		array(3)	{

				[1]=>

				int(1)

				[2]=>

				int(2)

				[3]=>

				int(3)

		}

		["firstPageInRange"]=>

		int(1)

		["lastPageInRange"]=>

		int(3)

		["currentItemCount"]=>

		int(8)

		["totalItemCount"]=>

		int(19)

		["firstItemNumber"]=>

		int(1)

		["lastItemNumber"]=>

		int(8)

}

Using	this	information,	we	can	easily	build	an	HTML	footer	to	navigate	across	the	collection.

Note:	using	zend-view,	we	can	consume	the		paginationControl()	 	helper,	which	emits
an	HTML	pagination	bar.

An	example	using	Plates
Plates 	implements	templates	using	native	PHP;	it	is	fast	and	easy	to	use,	without	any
additional	meta	language;	it	is	just	PHP.

In	our	example,	we	will	create	a	Plates	template	to	paginate	a	collection	of	data	using	zend-
paginator.	We	will	use	Bootstrap 	as	the	UI	framework.

9

10

11

Paginating	data	collections	with	zend-paginator

43

For	purposes	of	this	example,	blog	posts	will	be	accessible	via	the	following	URL:

/blog[/page/{page:\d+}]

where		[/page/{page:\d+}]		represents	the	optional	page	number	(using	the	regexp		\d+		to
validate	only	digits).	If	we	open	the		/blog		URL	we	will	get	the	first	page	of	the	collection.	To
return	the	second	page	we	need	to	connect	to		/blog/page/2	,	third	page	to		/blog/page/3	,
and	so	on.

For	instance,	we	can	manage	the	page	parameter	using	a	PSR-7	middleware	class
consuming	the	previous		Posts		adapter,	that	works	as	follow:

Paginating	data	collections	with	zend-paginator

44

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	League\Plates\Engine;

use	Zend\Paginator\Paginator;

use	Zend\Paginator\ScrollingStyle\Sliding;

use	Posts;

class	PaginatorMiddleware

{

				/**	@var	Posts	*/

				protected	$posts;

				/**	@var	Engine	*/

				protected	$template;

				public	function	__construct(Posts	$post,	Engine	$template	=	null)

				{

								$this->posts				=	$post;

								$this->template	=	$template;

				}

				public	function	__invoke(

								ServerRequestInterface	$request,

								ResponseInterface	$response,	callable	$next	=	null

)	{

								$paginator	=	new	Paginator($this->posts);

								$page	=	$request->getAttribute('page',	1);

								Paginator::setDefaultScrollingStyle(new	Sliding());

								$paginator->setCurrentPageNumber($page);

								$paginator->setDefaultItemCountPerPage(8);

								$pages	=	$paginator->getPages();

								$response->getBody()->write(

												$this->template->render('posts',	[

																'paginator'	=>	$paginator,

																'pages'					=>	$pages,

])

);

								return	$response;

				}

}

We	used	a		posts.php		template,	passing	the	paginator	($paginator)	and	the	pages
($pages)	instances.	That	template	could	then	look	like	the	following:

Paginating	data	collections	with	zend-paginator

45

<?php	$this->layout('template',	['title'	=>	'Blog	Posts'])	?>

<div	class="container">

		<h1>Blog	Posts</h1>

		<?php	foreach	($paginator	as	$post)	:	?>

				<div	class="row">

						<?php	//	prints	the	post	title,	date,	author,	...	?>

				</div>

		<?php	endforeach	?>

		<?php	$this->insert('page-navigation',	['pages'	=>	$pages])	?>

</div>

The		page-navigation.php		template	contains	the	HTML	code	for	the	page	navigation	control,
with	button	like	previous,	next,	and	page	numbers.

<nav	aria-label="Page	navigation">

		<ul	class="pagination">

				<?php	if	(!	isset($pages->previous))	:	?>

						<li	class="disabled">

«

				<?php	else	:	?>

						<a	href="/blog/page/<?=	$pages->previous	?>"	aria-label="Previous"><span	ari

a-hidden="true">«

				<?php	endif	?>

				<?php	foreach	($pages->pagesInRange	as	$num)	:	?>

						<?php	if	($num	===	$pages->current)	:	?>

								<li	class="active"><a	href="/blog/page/<?=	$num	?>"><?=	$num	?>	<span	class="s

r-only">(current)

						<?php	else	:	?>

								<a	href="/blog/page/<?=	$num	?>"><?=	$num	?>

						<?php	endif	?>

				<?php	endforeach	?>

				<?php	if	(!	isset($pages->next))	:	?>

						<li	class="disabled">&raq

uo;

				<?php	else	:	?>

						<a	href="/blog/page/<?=	$pages->next	?>"	aria-label="Next"><span	aria-hidden

="true">»

				<?php	endif	?>

		

</nav>

Summary

Paginating	data	collections	with	zend-paginator

46

The	zend-paginator	component	of	Zend	Framework	is	a	powerful	and	easy	to	use	package
that	provides	pagination	of	data.	It	can	be	used	as	standalone	component	in	many	PHP
projects	using	different	frameworks	and	template	engines.	In	this	article,	I	demonstrated	how
to	use	it	in	general	purpose	applications.	Moreover,	I	showed	an	example	using	Plates	and
Bootstrap,	in	a	PSR-7	middleware	scenario.

Visit	the	zend-paginator	documentation 	to	find	out	what	else	you	might	be	able	to	do	with
this	component!

Footnotes

.	https://docs.zendframework.com/zend-paginator/	↩

.	https://en.wikipedia.org/wiki/Pagination	↩

.	https://docs.zendframework.co/zend-view/	↩

.	http://platesphp.com/	↩

.	https://docs.zendframework.com/zend-db/	↩

.	http://php.net/iterator	↩

.	https://github.com/zendframework/zend-
paginator/blob/master/src/ScrollingStyle/Sliding.php	↩

.	https://docs.zendframework.com/zend-servicemanager/	↩

.	https://docs.zendframework.com/zend-paginator/usage/#rendering-pages-with-view-
scripts	↩

.	http://platesphp.com/	↩

.	http://getbootstrap.com/	↩

.	https://docs.zendframework.com/zend-paginator/	↩

12

1

2

3

4

5

6

7

8

9

10

11

12

Paginating	data	collections	with	zend-paginator

47

https://docs.zendframework.com/zend-paginator/
https://en.wikipedia.org/wiki/Pagination
https://docs.zendframework.co/zend-view/
http://platesphp.com/
https://docs.zendframework.com/zend-db/
http://php.net/iterator
https://github.com/zendframework/zend-paginator/blob/master/src/ScrollingStyle/Sliding.php
https://docs.zendframework.com/zend-servicemanager/
https://docs.zendframework.com/zend-paginator/usage/#rendering-pages-with-view-scripts
http://platesphp.com/
http://getbootstrap.com/
https://docs.zendframework.com/zend-paginator/

Logging	PHP	applications
by	Enrico	Zimuel

Every	PHP	application	generates	errors,	warnings,	and	notices	and	throws	exceptions.	If	we
do	not	log	this	information,	we	lose	a	way	to	identify	and	solve	problems	at	runtime.
Moreover,	we	may	need	to	log	specific	actions	such	as	a	user	login	and	logout	attempts.	All
such	information	should	be	filtered	and	stored	in	an	efficient	way.

PHP	offers	the	function	error_log() 	to	send	an	error	message	to	the	defined	system	logger,
and	the	function	set_error_handler() 	to	specify	a	handler	for	intercepting	warnings,	errors,
and	notices	generated	by	PHP.

These	functions	can	be	used	to	customize	error	management,	but	it's	up	to	the	developer	to
write	the	logic	to	filter	and	store	the	data.

Zend	Framework	offers	a	logging	component,	zend-log ;	the	library	can	be	used	as	a
general	purpose	logging	system.	It	supports	multiple	log	backends,	formatting	messages
sent	to	the	log,	and	filtering	messages	from	being	logged.

Last	but	not	least,	zend-log	is	compliant	with	PSR-3 ,	the	logger	interface	standard.

Installation
You	can	install	zend-log 	using	Composer:

composer	require	zendframework/zend-log

Usage
zend-log	can	be	used	to	create	log	entries	in	different	formats	using	multiple	backends.	You
can	also	filter	the	log	data	from	being	saved,	and	process	the	log	event	prior	to	filtering	or
writing,	allowing	the	ability	to	substitute,	add,	remove,	or	modify	the	data	you	log.

Basic	usage	of	zend-log	requires	both	a	writer	and	a	logger	instance.	A	writer	stores	the	log
entry	into	a	backend,	and	the	logger	consumes	the	writer	to	perform	logging	operations.

As	an	example:

1
2

3

4

5

Logging	PHP	applications

48

https://www.zimuel.it

use	Zend\Log\Logger;

use	Zend\Log\Writer\Stream;

$logger	=	new	Logger;

$writer	=	new	Stream('php://output');

$logger->addWriter($writer);

$logger->log(Logger::INFO,	'Informational	message');

The	above	produces	the	following	output:

2017-09-11T15:07:46+02:00	INFO	(6):	Informational	message

The	output	is	a	string	containing	a	timestamp,	a	priority	(INFO	(6))	and	the	message
(Informational	message).	The	output	format	can	be	changed	using	the		setFormatter()	
method	of	the	writer	object	($writer).	The	default	log	format,	produced	by	the	Simple
formatter,	is	as	follows:

%timestamp%	%priorityName%	(%priority%):	%message%	%extra%

where		%extra%		is	an	optional	value	containing	additional	information.

For	instance,	if	you	wanted	to	change	the	format	to	include	only		log	%message%	,	you	could
do	the	following:

$formatter	=	new	Zend\Log\Formatter\Simple('log	%message%'	.	PHP_EOL);

$writer->setFormatter($formatter);

Log	PHP	events
zend-log	can	also	be	used	to	log	PHP	errors	and	exceptions.	You	can	log	PHP	errors	using
the	static	method		Logger::registerErrorHandler($logger)		and	intercept	exceptions	using	the
static	method		Logger::registerExceptionHandler($logger)	.

6

Logging	PHP	applications

49

use	Zend\Log\Logger;

use	Zend\Log\Writer;

$logger	=	new	Logger;

$writer	=	new	Writer\Stream(__DIR__	.	'/test.log');

$logger->addWriter($writer);

//	Log	PHP	errors

Logger::registerErrorHandler($logger);

//	Log	exceptions

Logger::registerExceptionHandler($logger);

Filtering	data
As	mentioned,	we	can	filter	the	data	to	be	logged;	filtering	removes	messages	that	match
the	filter	criteria,	preventing	them	from	being	logged.

We	can	use	the		addFilter()		method	of	the	Writer	interface 	to	add	a	specific	filter.

For	instance,	we	can	filter	by	priority,	accepting	only	log	entries	with	a	priority	less	than	or
equal	to	a	specific	value:

$filter	=	new	Zend\Log\Filter\Priority(Logger::CRIT);

$writer->addFilter($filter);

In	the	above	example,	the	logger	will	only	store	log	entries	with	a	priority	less	than	or	equal
to		Logger::CRIT		(critical).	The	priorities	are	defined	by	the		Zend\Log\Logger		class:

const	EMERG			=	0;		//	Emergency:	system	is	unusable

const	ALERT			=	1;		//	Alert:	action	must	be	taken	immediately

const	CRIT				=	2;		//	Critical:	critical	conditions

const	ERR					=	3;		//	Error:	error	conditions

const	WARN				=	4;		//	Warning:	warning	conditions

const	NOTICE		=	5;		//	Notice:	normal	but	significant	condition

const	INFO				=	6;		//	Informational:	informational	messages

const	DEBUG			=	7;		//	Debug:	debug	messages

As	such,	only	emergency,	alerts,	or	critical	entries	would	be	logged.

We	can	also	filter	log	data	based	on	regular	expressions,	timestamps,	and	more.	One
powerful	filter	uses	a	zend-validator 		ValidatorInterface		instance	to	filter	the	log;	only	valid
entries	would	be	logged	in	such	cases.

7

8

Logging	PHP	applications

50

Processing	data
If	you	need	to	provide	additional	information	to	logs	in	an	automated	fashion,	you	can	use	a
	Zend\Log\Processer		class.	A	processor	is	executed	before	the	log	data	are	passed	to	the
writer.	The	input	of	a	processor	is	a	log	event,	an	array	containing	all	of	the	information	to
log;	the	output	is	also	a	log	event,	but	can	contain	modified	or	additional	values.	A	processor
modifies	the	log	event	to	prior	to	sending	it	to	the	writer.

You	can	read	about	processor	adapters	offered	by	zend-log	in	the	documentation .

Multiple	backends
One	of	the	cool	feature	of	zend-log	is	the	possibility	to	write	logs	using	multiple	backends.
For	instance,	you	can	write	a	log	to	both	a	file	and	a	database	using	the	following	code:

9

Logging	PHP	applications

51

use	Zend\Db\Adapter\Adapter	as	DbAdapter;

use	Zend\Log\Formatter;

use	Zend\Log\Writer;

use	Zend\Log\Logger;

//	Create	our	adapter

$db	=	new	DbAdapter([

				'driver'			=>	'Pdo',

				'dsn'						=>	'mysql:dbname=testlog;host=localhost',

				'username'	=>	'root',

				'password'	=>	'password'

]);

//	Map	event	data	to	database	columns

$mapping	=	[

				'timestamp'	=>	'date',

				'priority'		=>	'type',

				'message'			=>	'event',

];

//	Create	our	database	log	writer

$writerDb	=	new	Writer\Db($db,	'log',	$mapping);	//	log	table

$formatter	=	new	Formatter\Base();

$formatter->setDateTimeFormat('Y-m-d	H:i:s');	//	MySQL	DATETIME	format

$writerDb->setFormatter($formatter);

//	Create	our	file	log	writer

$writerFile	=	new	Writer\Stream(__DIR__	.	'/test.log');

//	Create	our	logger	and	register	both	writers

$logger	=	new	Logger();

$logger->addWriter($writerDb,	1);

$logger->addWriter($writerFile,	100);

//	Log	an	information	message

$logger->info('Informational	message');

The	database	writer	requires	the	credentials	to	access	the	table	where	you	will	store	log
information.	You	can	customize	the	field	names	for	the	database	table	using	a		$mapping	
array,	containing	an	associative	array	mapping	log	fields	to	database	columns.

The	database	writer	is	composed	in		$writerDb		and	the	file	writer	in		$writerFile	.	The
writers	are	added	to	the	logger	using	the		addWriter()		method	with	a	priority	number;	higher
integer	values	indicate	higher	priority	(triggered	earliest).	We	chose	priority	1	for	the
database	writer,	and	priority	100	for	the	file	writer;	this	means	the	file	writer	will	log	first,
followed	by	logging	to	the	database.

Note:	we	used	a	special	date	formatter	for	the	database	writer.	This	is	required	to
translate	the	log	timestamp	into	the	DATETIME	format	of	MySQL.

Logging	PHP	applications

52

PSR-3	support
If	you	need	to	be	compatible	with	PSR-3 ,	you	can	use		Zend\Log\PsrLoggerAdapter	.	This
logger	can	be	used	anywhere	a		Psr\Log\LoggerInterface		is	expected.

As	an	example:

use	Psr\Log\LogLevel;

use	Zend\Log\Logger;

use	Zend\Log\PsrLoggerAdapter;

$zendLogLogger	=	new	Logger;

$psrLogger	=	new	PsrLoggerAdapter($zendLogLogger);

$psrLogger->log(LogLevel::INFO,	'We	have	a	PSR-compatible	logger');

To	select	a	PSR-3	backend	for	writing,	we	can	use	the		Zend\Log\Writer\Psr		class.	In	order
to	use	it,	you	need	to	pass	a		Psr\Log\LoggerInterface		instance	to	the		$psrLogger	
constructor	argument:

$writer	=	new	Zend\Log\Writer\Psr($psrLogger);

zend-log	also	supports	PSR-3	message	placeholders 	via	the
	Zend\Log\Processor\PsrPlaceholder		class.	To	use	it,	you	need	to	add	a		PsrPlaceholder	
instance	to	a	logger,	using	the		addProcess()		method.	Placeholder	names	correspond	to
keys	in	the	"extra"	array	passed	when	logging	a	message:

use	Zend\Log\Logger;

use	Zend\Log\Processor\PsrPlaceholder;

$logger	=	new	Logger;

$logger->addProcessor(new	PsrPlaceholder);

$logger->info('User	with	email	{email}	registered',	['email'	=>	'user@example.org']);

An	informational	log	entry	will	be	stored	with	the	message		User	with	email	user@example.org
registered	.

Logging	an	MVC	application
If	you	are	using	a	zend-mvc 	based	application,	you	can	use	zend-log	as	module.	zend-log
provides	a	Module.php 	class,	which	registers		Zend\Log		as	a	module	in	your	application.

10

11

12
13

Logging	PHP	applications

53

In	particular,	the	zend-log	module	provides	the	following	services	(under	the	namespace
	Zend\Log):

Logger::class									=>	LoggerServiceFactory::class,

'LogFilterManager'				=>	FilterPluginManagerFactory::class,

'LogFormatterManager'	=>	FormatterPluginManagerFactory::class,

'LogProcessorManager'	=>	ProcessorPluginManagerFactory::class,

'LogWriterManager'				=>	WriterPluginManagerFactory::class,

The		Logger::class		service	can	be	configured	using	the		log		config	key;	the	documentation
provides	configuration	examples .

In	order	to	use	the		Logger		service	in	your	MVC	stack,	grab	it	from	the	service	container.	For
instance,	you	can	pass	the	Logger	service	in	a	controller	using	a	factory:

use	Zend\Log\Logger;

use	Zend\ServiceManager\Factory\FactoryInterface;

class	IndexControllerFactory	implements	FactoryInterface

{

				public	function	__invoke(

								ContainerInterface	$container,

								$requestedName,

								array	$options	=	null

)	{

								return	new	IndexController(

												$container->get(Logger::class)

);

				}

}

via	the	following	service	configuration	for	the		IndexController	:

'controllers'	=>	[

				'factories'	=>	[

								IndexController::class	=>	IndexControllerFactory::class,

],

],

Logging	a	middleware	application
You	can	also	integrate	zend-log	in	your	middleware	applications.	If	you	are	using
Expressive ,	add	the	component's	ConfigProvider 	to	your		config/config.php		file.

14

15 16

17

Logging	PHP	applications

54

Note:	if	you	are	using	zend-component-installer ,	you	will	be	prompted	to	install	zend-
log's	config	provider	when	you	install	the	component	via	Composer.

Note:	This	configuration	registers	the	same	services	provided	in	the	zend-mvc	example,
above.

To	use	zend-log	in	middleware,	grab	it	from	the	dependency	injection	container	and	pass	it
as	a	dependency	to	your	middleware:

namespace	App\Action;

use	Psr\Container\ContainerInterface;

use	Zend\Log\Logger;

class	HomeActionFactory

{

				public	function	__invoke(ContainerInterface	$container)	:	HomeAction

				{

								return	new	HomeAction(

												$container->get(Logger::class)

);

				}

}

As	an	example	of	logging	in	middleware:

17

Logging	PHP	applications

55

namespace	App\Action;

use	Interop\Http\ServerMiddleware\DelegateInterface;

use	Interop\Http\ServerMiddleware\MiddlewareInterface	as	ServerMiddlewareInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Log\Logger;

class	HomeAction	implements	ServerMiddlewareInterface

{

				private	$logger;

				public	function	__construct(Logger	$logger)

				{

								$this->logger	=	logger;

				}

				public	function	process(

								ServerRequestInterface	$request,

								DelegateInterface	$delegate

)	{

								$this->logger->info(__CLASS__	.	'	has	been	executed');

								//	...

				}

}

Listening	for	errors	in	Expressive
Expressive	and	Stratigility 	provide	a	default	error	handler	middleware	implementation,
	Zend\Stratigility\Middleware\ErrorHandler		which	listens	for	PHP	errors	and
exceptions/throwables.	By	default,	it	spits	out	a	simple	error	page	when	an	error	occurs,	but
it	also	provides	the	ability	to	attach	listeners,	which	can	then	act	on	the	provided	error.

Listeners	receive	the	error,	the	request,	and	the	response	that	the	error	handler	will	be
returning.	We	can	use	that	information	to	log	information!

First,	we	create	an	error	handler	listener	that	composes	a	logger,	and	logs	the	information:

18

Logging	PHP	applications

56

use	Exception;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Throwable;

use	Zend\Log\Logger;

class	LoggingErrorListener

{

				/**						

					*	Log	message	string	with	placeholders

					*/

				const	LOG_STRING	=	'{status}	[{method}]	{uri}:	{error}';

				private	$logger;

				public	function	__construct(Logger	$logger)

				{

								$this->logger	=	$logger;

				}

				public	function	__invoke(

								$error,

								ServerRequestInterface	$request,

								ResponseInterface	$response

)	{

								$this->logger->error(self::LOG_STRING,	[

												'status'	=>	$response->getStatusCode(),

												'method'	=>	$request->getMethod(),

												'uri'				=>	(string)	$request->getUri(),

												'error'		=>	$error->getMessage(),

]);

				}

}

The		ErrorHandler		implementation	casts	PHP	errors	to		ErrorException		instances,
which	means	that		$error		is	always	some	form	of	throwable.

We	can	then	write	a	delegator	factory	that	will	register	this	as	a	listener	on	the
	ErrorHandler	:

Logging	PHP	applications

57

use	LoggingErrorListener;

use	Psr\Container\ContainerInterface;

use	Zend\Log\Logger;

use	Zend\Log\Processor\PsrPlaceholder;

use	Zend\Stratigility\Middleware\ErrorHandler;

class	LoggingErrorListenerFactory

{

				public	function	__invoke(

								ContainerInterface	$container,

								$serviceName,

								callable	$callback

)	:	ErrorHandler	{

								$logger	=	$container->get(Logger::class);

								$logger->addProcessor(new	PsrPlaceholder());

								$listener	=	new	LoggingErrorListener($logger);

								$errorHandler	=	$callback();

								$errorHandler->attachListener($listener);

								return	$errorHandler;

				}

}

And	then	register	the	delegator	in	your	configuration:

//	In	a	ConfigProvider,	or	a	config/autoload/*.global.php	file:

use	LoggingErrorListenerFactory;

use	Zend\Stratigility\Middleware\ErrorHandler;

return	[

				'dependencies'	=>	[

								'delegators'	=>	[

												ErrorHandler::class	=>	[

																LoggingErrorListenerFactory::class,

],

],

],

];

At	this	point,	your	error	handler	will	now	also	log	errors	to	your	configured	writers!

Summary
The	zend-log	component	offers	a	wide	set	of	features,	including	support	for	multiple	writers,
filtering	of	log	data,	compatibility	with	PSR-3 ,	and	more.19

Logging	PHP	applications

58

Hopefully	you	can	use	the	examples	above	for	consuming	zend-log	in	your	standalone,
zend-mvc,	Expressive,	or	general	middleware	applications!

Learn	more	in	the	zend-log	documentation .

Footnotes

.	http://php.net/error_log	↩

.	http://php.net/set_error_handler	↩

.	https://docs.zendframework.com/zend-log/	↩

.	http://www.php-fig.org/psr/psr-3/	↩

.	https://docs.zendframework.com/zend-log/	↩

.	https://github.com/zendframework/zend-log/blob/master/src/Formatter/Simple.php	↩

.	https://github.com/zendframework/zend-
log/blob/master/src/Writer/WriterInterface.php	↩

.	https://docs.zendframework.com/zend-validator/	↩

.	https://docs.zendframework.com/zend-log/processors/	↩

.	http://www.php-fig.org/psr/psr-3/	↩

.	http://www.php-fig.org/psr/psr-3/#12-message	↩

.	https://docs.zendframework.com/zend-mvc/	↩

.	https://github.com/zendframework/zend-log/blob/master/src/Module.php	↩

.	https://docs.zendframework.com/zend-log/service-manager/#zend-log-as-a-module
↩

.	https://docs.zendframework.com/zend-expressive/	↩

.	https://github.com/zendframework/zend-log/blob/master/src/ConfigProvider.php	↩

.	https://docs.zendframework.com/zend-component-installer/	↩

.	https://docs.zendframework.com/zend-stratigility/	↩

.	http://www.php-fig.org/psr/psr-3/	↩

.	https://docs.zendframework.com/zend-log/	↩

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Logging	PHP	applications

59

http://php.net/error_log
http://php.net/set_error_handler
https://docs.zendframework.com/zend-log/
http://www.php-fig.org/psr/psr-3/
https://docs.zendframework.com/zend-log/
https://github.com/zendframework/zend-log/blob/master/src/Formatter/Simple.php
https://github.com/zendframework/zend-log/blob/master/src/Writer/WriterInterface.php
https://docs.zendframework.com/zend-validator/
https://docs.zendframework.com/zend-log/processors/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-3/#12-message
https://docs.zendframework.com/zend-mvc/
https://github.com/zendframework/zend-log/blob/master/src/Module.php
https://docs.zendframework.com/zend-log/service-manager/#zend-log-as-a-module
https://docs.zendframework.com/zend-expressive/
https://github.com/zendframework/zend-log/blob/master/src/ConfigProvider.php
https://docs.zendframework.com/zend-component-installer/
https://docs.zendframework.com/zend-stratigility/
http://www.php-fig.org/psr/psr-3/
https://docs.zendframework.com/zend-log/

Logging	PHP	applications

60

Discover	and	Read	RSS	and	Atom	Feeds
by	Matthew	Weier	O'Phinney

Remember	RSS	and	Atom	feeds?

Chances	are,	you	may	have	discovered	this	book	because	it	was	announced	on	a	feed:

A	number	of	Twitter	services	poll	feeds	and	send	links	when	new	entries	are	discovered.
Some	of	you	may	be	using	feed	readers	such	as	Feedly .
Many	news	aggregator	services,	including	tools	such	as	Google	Now,	use	RSS	and
Atom	feeds	as	sources.

An	interesting	fact:	Atom	itself	is	often	used	as	a	data	transfer	format	for	REST	services,
particularly	content	management	platforms!	As	such,	being	familiar	with	feeds	and	having
tools	to	work	with	them	is	an	important	skill	for	a	web	developer!

In	this	first	of	a	two	part	series	on	feeds,	we'll	look	at	feed	discovery,	as	well	as	reading,
using	zend-feed's	Reader	subcomponent.

Getting	started
First,	of	course,	you	need	to	install	zend-feed:

$	composer	require	zendframework/zend-feed

As	of	version	2.6.0,	the	component	has	a	very	minimal	set	of	dependencies:	it	only	requires
zendframework/zend-escaper	and	zendframework/zend-stdlib	in	order	to	work.	It	has	a
number	of	additional,	optional	requirements	depending	on	features	you	want	to	opt-in	to:

psr/http-message	and/or	zend-http,	to	allow	polling	pages	for	feeds,	feeds	themselves,
or	PubSubHubbub	services.
zendframework/zend-cache,	to	allow	caching	feeds	between	requests.
zendframework/zend-db,	which	is	used	when	using	the	PubSubHubbub	subcomponent,
in	order	for	PuSH	subscribers	to	store	updates.
zendframework/zend-validator,	for	validating	addresses	used	in	Atom	feeds	and	entries
when	using	the	Writer	subcomponent.

For	our	examples,	we	will	need	an	HTTP	client	in	order	to	fetch	pages.	For	the	sake	of
simplicity,	we'll	go	ahead	and	use	zendframework/zend-http;	if	you	are	already	using	Guzzle
in	your	application,	you	can	create	a	wrapper	for	it	following	instructions	in	the	zend-feed

1

2

Discover	and	Read	RSS	and	Atom	Feeds

61

https://mwop.net/

manual .

$	composer	require	zendframework/zend-http

Now	that	we	have	these	pieces	in	place,	we	can	move	on	to	link	discovery!

Link	discovery
The	Reader	subcomponent	contains	facilities	for	finding	Atom	and	RSS	links	within	an
HTML	page.	Let's	try	this	now:

//	In	discovery.php:

use	Zend\Feed\Reader\Reader;

require	'vendor/autoload.php';

$feedUrls		=	[];

$feedLinks	=	Reader::findFeedLinks('https://framework.zend.com');

foreach	($feedLinks	as	$link)	{

				switch	($link['type'])	{

								case	'application/atom+xml':

												$feedUrls[]	=	$link['href'];

												break;

								case	'application/rss+xml':

												$feedUrls[]	=	$link['href'];

												break;

				}

}

var_export($feedUrls);

If	you	run	the	above,	you	should	get	a	list	like	the	following	(at	the	time	of	writing):

array	(

		0	=>	'https://framework.zend.com/security/feed',

		1	=>	'https://framework.zend.com/blog/feed-atom.xml',

		2	=>	'https://framework.zend.com/blog/feed-rss.xml',

		3	=>	'https://framework.zend.com/releases/atom.xml',

		4	=>	'https://framework.zend.com/releases/rss.xml',

)

That's	rather	useful!	We	can	poll	a	page	to	discover	links,	and	then	follow	them!

2

Discover	and	Read	RSS	and	Atom	Feeds

62

Internally,	the	returned		$feedLinks		is	a		Zend\Feed\Reader\FeedSet		instance,	which	is	really
just	an		ArrayObject		where	each	item	it	composes	is	itself	a		FeedSet		with	specific	attributes
set	(including	the		type	,		href	,	and		rel	,	usually).	It	only	returns	links	that	are	known	feed
types;	any	other	type	of	link	is	ignored.

Reading	a	feed
Now	that	we	know	where	some	feeds	are,	we	can	read	them.

To	do	that,	we	pass	a	URL	for	a	feed	to	the	reader,	and	then	pull	data	from	the	returned
feed:

//	In	reader.php:

use	Zend\Feed\Reader\Reader;

require	'vendor/autoload.php';

$feed	=	Reader::import('https://framework.zend.com/releases/rss.xml');

printf(

				"%s:	%s\n",

				$feed->getTitle(),

				$feed->getLink(),

				$feed->getDescription()

);

The	above	will	result	in:

[Zend	Framework	Releases](https://github.com/zendframework):	Zend	Framework	and	zfcamp

us	releases

The	above	is	considered	the	feed	channel	data;	it's	information	about	the	feed	itself.	Most
likely,	though,	we	want	to	know	what	entries	are	in	the	feed!

Getting	feed	entries
The	feed	returned	by		Reader::import()		is	itself	iterable,	which	each	item	of	iteration	being
an	entry.	At	its	most	basic:

Discover	and	Read	RSS	and	Atom	Feeds

63

foreach	($feed	as	$entry)	{

				printf(

								"%s:	%s\n",

								$entry->getTitle(),

								$entry->getLink(),

								$entry->getDescription()

);

}

This	will	loop	through	each	entry,	listing	the	title,	the	canonical	link	to	the	item,	and	a
description	of	the	entry.

The	above	will	work	across	any	type	of	feed.	However,	feed	capabilities	vary	based	on	type.
RSS	and	Atom	feed	entries	will	have	different	data	available;	in	fact,	Atom	is	considered	an
extensible	protocol,	which	means	that	such	entries	can	potentially	expose	quite	a	lot	of
additional	data!

You	may	want	to	read	up	on	what's	available;	follow	the	footnotes	to	find	relevant	links:

RSS	entry	properties
Atom	entries

Until	next	time
zend-feed's	Reader	subcomponent	offers	a	number	of	other	capabilities,	including:

Importing	actual	feed	strings	(versus	fetching	via	an	HTTP	client)
The	ability	to	utilize	alternate	HTTP	clients.
The	ability	to	extend	the	Atom	protocol	in	order	to	access	additional	data.

The	zend-feed	component	has	extensive	documentation ,	which	will	answer	most	questions
you	may	have	at	this	point.

We	hope	this	quick	primer	gets	you	started	consuming	feeds!

Footnotes

.	https://feedly.com	↩

.	https://docs.zendframework.com/zend-feed/psr7-clients/	↩

.	https://docs.zendframework.com/zend-feed/consuming-rss/#get-properties	↩

.	https://docs.zendframework.com/zend-feed/consuming-atom/	↩

3
4

5

1

2

3

4

5

Discover	and	Read	RSS	and	Atom	Feeds

64

https://feedly.com
https://docs.zendframework.com/zend-feed/psr7-clients/
https://docs.zendframework.com/zend-feed/consuming-rss/#get-properties
https://docs.zendframework.com/zend-feed/consuming-atom/

.	https://docs.zendframework.com/zend-feed/	↩5

Discover	and	Read	RSS	and	Atom	Feeds

65

https://docs.zendframework.com/zend-feed/

Create	RSS	and	Atom	Feeds
by	Matthew	Weier	O'Phinney

In	the	previous	article,	we	detailed	RSS	and	Atom	feed	discovery	and	parsing.	In	this	article
we're	going	to	cover	its	complement:	feed	creation!

zend-feed	provides	the	ability	to	create	both	Atom	1.0	and	RSS	2.0	feeds,	and	even
supports	custom	extensions	during	feed	generation,	including:

Atom	(xmlns:atom	;	RSS	2	only):	provide	links	to	Atom	feeds	and	Pubsubhubbub	URIs
within	your	RSS	feed.
Content	(xmlns:content	;	RSS	2	only):	provide	CDATA	encoded	content	for	individual
feed	items.
DublinCore	(xmlns:dc	;	RSS	2	only):	provide	metadata	around	common	content
elements	such	as	author/publisher/contributor/creator,	dates,	languages,	etc.
iTunes	(xmlns:itunes):	create	podcast	feeds	and	items	compatible	with	iTunes.
Slash	(xmlns:slash	;	RSS	2	only):	communicate	comment	counts	per	item.
Threading	(xmlns:thr	;	RSS	2	only):	provide	metadata	around	threading	feed	items,
including	indicating	what	an	item	is	in	reply	to,	linking	to	replies,	and	metrics	around
each.
WellFormedWeb	(xmlns:wfw	;	RSS	2	only):	provide	a	link	to	a	separate	comments	feed
for	a	given	entry.

You	can	also	provide	your	own	custom	extensions	if	desired;	these	are	just	what	we	ship	out
of	the	box!	In	many	cases,	you	don't	even	need	to	know	about	the	extensions,	as	zend-feed
will	take	care	of	adding	in	those	that	are	required,	based	on	the	data	you	provide	in	the	feed
and	entries.

Creating	a	feed
The	first	step,	of	course,	is	having	some	content!	I'll	assume	you	have	items	you	want	to
publish,	and	those	will	be	in		$data	,	which	we'll	loop	over.	How	that	data	looks	will	be
dependent	on	your	application,	so	please	be	aware	that	you	may	need	to	adjust	any
examples	below	to	fit	your	own	data	source.

Next,	we	need	to	have	zend-feed	installed;	do	that	via	Composer:

$	composer	require	zendframework/zend-feed

Create	RSS	and	Atom	Feeds

66

https://mwop.net/

Now	we	can	finally	get	started.	We'll	begin	by	creating	a	feed,	and	populating	it	with	some
basic	metadata:

use	Zend\Feed\Writer\Feed;

$feed	=	new	Feed();

//	Title	of	the	feed

$feed->setTitle('Tutorial	Feed');

//	Link	to	the	feed's	target,	usually	a	homepage:

$feed->setLink('https://example.com/');

//	Link	to	the	feed	itself,	and	the	feed	type:

$feed->setFeedLink('https://example.com/feed.xml',	'rss');

//	Feed	description;	only	required	for	RSS:

$feed->setDescription('This	is	a	tutorial	feed	for	example.com');

A	couple	things	to	note:	First,	you	need	to	know	what	type	of	feed	you're	creating	up	front,
as	it	will	affect	what	properties	must	be	set,	as	well	as	which	are	actually	available.	I
personally	like	to	generate	feeds	of	both	types,	so	I'll	do	the	above	within	a	method	call	that
accepts	the	feed	type	as	an	argument,	and	then	puts	some	declarations	within	conditionals
based	on	that	type.

Second,	you'll	need	to	know	the	fully-qualified	URIs	to	the	feed	target	and	the	feed	itself.
These	will	generally	be	something	you	generate;	most	routing	libraries	will	have	these
capabilities,	and	you'll	generate	these	within	your	application,	instead	of	hard-coding	them
as	I	have	done	here.

Adding	items
Now	that	we	have	our	feed,	we'll	loop	over	our	data	set	and	add	items.	Items	generally	have:

a	title
a	link	to	the	item
an	author
the	dates	when	it	was	modified,	and	last	updated
content

Putting	it	together:

Create	RSS	and	Atom	Feeds

67

$latest	=	new	DateTime('@0');

foreach	($data	as	$datum)	{

				//	Create	an	empty	entry:

				$entry	=	$feed->createEntry();

				//	Set	the	entry	title:

				$entry->setTitle($datum->getTitle());

				//	Set	the	link	to	the	entry:

				$entry->setLink(sprintf('%s%s.html',	$baseUri,	$datum->getId()));

				//	Add	an	author,	if	you	can.	Each	author	entry	should	be	an

				//	array	containing	minimally	a	"name"	key,	and	zero	or	more	of

				//	the	keys	"email"	or	"uri".

				$entry->addAuthor($datum->getAuthor());

				//	Set	the	date	created:

				$entry->setDateCreated(new	DateTime($datum->getDateCreated()));

				//	And	the	date	last	updated:

				$modified	=	new	DateTime($datum->getDateModified());

				$entry->setDateModified($modified);

				//	And	finally,	some	content:

				$entry->setContent($datum->getContent());

				//	Add	the	new	entry	to	the	feed:

				$feed->addEntry($entry);

				//	And	memoize	the	date	modified,	if	it's	more	recent:

				$latest	=	$modified	>	$latest	?	$modified	:	$latest;

}

There	are	quite	a	few	other	properties	you	can	set,	and	some	of	these	will	vary	based	on
custom	extensions	you	might	register	with	the	feed;	the	above	are	the	typical	items	you'll
include	in	a	feed	entry,	however.

What	is	that	bit	about		$latest	,	though?

Feeds	need	to	have	a	timestamp	indicating	when	they	were	most	recently	modified.

Why?	Because	feeds	are	intended	to	be	read	by	machines	and	aggregators,	and	need	to
know	when	new	content	is	available.

You	could	set	the	date	of	modification	to	whatever	the	current	timestamp	is	at	time	of
execution,	but	it's	better	to	have	it	in	sync	with	the	most	recent	entry	in	the	feed	itself.	As
such,	the	above	code	creates	a	timestamp	set	to	timestamp		0	,	and	checks	for	a	modified
date	that	is	newer	on	each	iteration.

Create	RSS	and	Atom	Feeds

68

Once	we	have	that	in	place,	we	can	add	the	modified	date	to	the	feed	itself:

$feed->setDateModified($latest);

Rendering	the	feed
Rendering	the	feed	involves	exporting	it,	which	requires	knowing	the	feed	type;	this	is
necessary	so	that	the	correct	XML	markup	is	generated.

So,	let's	create	an	RSS	feed:

$rss	=	$feed->export('rss');

If	we	wanted,	and	we	have	the	correct	properties	present,	we	can	also	render	Atom:

$atom	=	$feed->export('atom');

Now	what?

I	often	pre-generate	feeds	and	cache	them	to	the	filesystem.	In	that	case,	a
	file_put_contents()		call,	using	the	generated	feed	as	the	string	contents,	is	all	that's
needed.

If	you're	serving	the	feed	back	over	HTTP,	you	will	want	to	send	back	the	correct	HTTP
	Content-Type		when	you	do.	Additionally,	it's	good	to	send	back	a		Last-Modified		header
with	the	same	date	as	the	feed's	own	last	modified	date,	and/or	an	ETag	with	a	hash	of	the
feed;	these	allow	clients	performing	HEAD	requests	to	determine	whether	or	not	they	need
to	retrieve	the	full	content,	or	if	they	already	have	the	latest.

If	you	are	using	PSR-7	middleware,	these	processes	might	look	like	this:

Create	RSS	and	Atom	Feeds

69

use	Zend\Diactoros\Response\TextResponse;

$commonHeaders	=	[

				'Last-Modified'	=>	$feed->getDateModified()->format('c'),

				'ETag'	=>	hash('sha256',	$feed)

];

//	For	an	RSS	feed:

return	new	TextResponse($rss,	200,	array_merge(

				$commonHeaders,

				['Content-Type'	=>	'application/rss+xml']

));

//	For	an	Atom	feed:

return	new	TextResponse($atom,	200,	array_merge(

				$commonHeaders,

				['Content-Type'	=>	'application/atom+xml']

));

Summing	up
zend-feed's	generation	capabilities	are	incredibly	flexible,	while	making	the	general	use-case
straight-forward.	We	have	created	feeds	for	blog	posts,	releases,	tweets,	and	commenting
systems	using	the	component;	it	does	exactly	what	it	advertises.

Visit	the	zend-feed	documentation 	for	more	information.

Footnotes

.	https://docs.zendframework.com/zend-feed/	↩

1

1

Create	RSS	and	Atom	Feeds

70

https://docs.zendframework.com/zend-feed/

Manage	permissions	with	zend-
permissions-rbac
by	Matthew	Weier	O'Phinney

In	the	article	Manage	permissions	with	zend-permissions-acl,	we	cover	usage	of	Access
Control	Lists	(ACL)	for	managing	user	permissions.	In	this	article,	we'll	cover	another	option
provided	by	Zend	Framework,	zend-permissions-rbac ,	our	lightweight	role-based	access
control	(RBAC)	implementation.

Installing	zend-permissions-rbac
Just	as	you	would	any	of	our	components,	install	zend-permissions-rbac	via	Composer:

$	composer	require	zendframework/zend-permissions-rbac

The	component	has	no	requirements	at	this	time	other	than	a	PHP	version	of	at	least	5.5.

Vocabulary
In	RBAC	systems,	we	have	three	primary	items	to	track:

The	RBAC	system	composes	zero	or	more	roles.
A	role	is	granted	zero	or	more	permissions.
We	assert	whether	or	not	a	role	is	granted	a	given	permission.

zend-permissions-rbac	supports	role	inheritance,	even	allowing	a	role	to	inherit	permissions
from	multiple	other	roles.	This	allows	you	to	create	some	fairly	complex	and	fine-grained
permissions	schemes!

Basics
As	a	basic	example,	we'll	create	an	RBAC	for	a	content-based	website.	Let's	start	with	a
"guest"	role,	that	only	allows	"read"	permissions.

1

Manage	permissions	with	zend-permissions-rbac

71

https://mwop.net/

use	Zend\Permissions\Rbac\Rbac;

use	Zend\Permissions\Rbac\Role;

//	Create	some	roles

$guest=	new	Role('guest');

$guest->addPermission('read');

$rbac	=	new	Rbac();

$rbac->addRole($guest);

We	can	then	assert	if	a	given	role	is	granted	specific	permissions:

$rbac->isGranted('guest',	'read');	//	true

$rbac->isGranted('guest',	'write');	//	false

Unknown	roles

One	thing	to	note:	if	the	role	used	with		isGranted()		does	not	exist,	this	method	raises
an	exception,	specifically	a		Zend\Permissions\Rbac\Exception\InvalidArgumentException	,
indicating	the	role	could	not	be	found.

In	many	situations,	this	may	not	be	what	you	want;	you	may	want	to	handle	non-
existent	roles	gracefully.	You	could	do	this	in	three	ways.

First,	you	can	test	to	see	if	the	role	exists	before	you	check	the	permissions,	using
	hasRole()	:

if	(!	$rbac->hasRole($foo))	{

				//	failed,	due	to	missing	role

}

if	(!	$rbac->isGranted($foo,	$permission))	{

				//	failed,	due	to	missing	permissions

}

Second,	you	can	wrap	the		isGranted()		call	in	a	try/catch	block:

Manage	permissions	with	zend-permissions-rbac

72

try	{

				if	(!	$rbac->isGranted($foo,	$permission))	{

								//	failed,	due	to	missing	permissions

				}

}	catch	(RbacInvalidArgumentException	$e)	{

				if	(!	strstr($e->getMessage(),	'could	be	found'))	{

								//	failed,	due	to	missing	role

				}

				//	some	other	error	occured

				throw	$e;

}

Personally,	I	don't	like	to	use	exceptions	for	application	flow;	that	said,	in	most	cases,
you	will	be	working	with	a	role	instance	that	you've	just	added	to	the	RBAC.

Third,	zend-permissions-rbac	has	a	built-in	mechanism	for	this:

$rbac->setCreateMissingRoles(true);

After	calling	this	method,	any		isGranted()		calls	you	make	with	unknown	role	identifiers
will	simply	return	a	boolean		false	.

This	method	also	ensures	you	do	not	encounter	errors	when	creating	role	inheritance
chains	and	add	roles	out-of-order	(e.g.,	adding	children	which	have	not	yet	been
created	to	a	role	you	are	defining).

As	such,	please	assume	that	all	further	examples	have	called	this	method	if	creation	of
the	RBAC	instance	is	not	demonstrated.

Role	inheritance
Let's	say	we	want	to	build	on	the	previous	example,	and	create	an	"editor"	role	that	also
incorporates	the	permissions	of	the	"guest"	role,	and	adds	a	"write"	permission.

You	might	be	inclined	to	think	of	the	"editor"	as	inheriting	from	the	"guest"	role	—	in	other
words,	that	it	is	a	descendent	or	child	of	it.	However,	in	RBAC,	inheritance	works	in	the
opposite	direction:	a	parent	inherits	all	permissions	of	its	children.	As	such,	we'll	create	the
role	as	follows:

Manage	permissions	with	zend-permissions-rbac

73

$editor	=	new	Role('editor');

$editor->addChild($guest);

$editor->addPermission('write');

$rbac->addRole($editor);

$rbac->isGranted('editor',	'write');	//	true

$rbac->isGranted('editor',	'read');		//	true

$rbac->isGranted('guest',		'write');	//	false

Another	role	might	be	a	"reviewer"	who	can	"moderate"	content:

$reviewer	=	new	Role('reviewer');

$reviewer->addChild($guest);

$reviewer->addPermission('moderate');

$rbac->addRole($reviewer);

$rbac->isGranted('reviewer',	'moderate');	//	true

$rbac->isGranted('reviewer',	'write');				//	false;	editor	only!

$rbac->isGranted('reviewer',	'read');					//	true

$rbac->isGranted('guest',				'moderate');	//	false

Let's	create	another,	an	"admin"	who	can	do	all	of	the	above,	but	also	has	permissions	for
"settings":

$admin=	new	Role('admin');

$admin->addChild($editor);

$admin->addChild($reviewer);

$admin->addPermission('settings');

$rbac->addRole($admin);

$rbac->isGranted('admin',				'settings');	//	true

$rbac->isGranted('admin',				'write');				//	true

$rbac->isGranted('admin',				'moderate');	//	true

$rbac->isGranted('admin',				'read');					//	true

$rbac->isGranted('editor',			'settings');	//	false

$rbac->isGranted('reviewer',	'settings');	//	false

$rbac->isGranted('guest',				'write');				//	false

As	you	can	see,	permissions	lookups	are	recursive	and	collective;	the	RBAC	examines	all
children	and	each	of	their	descendants	as	far	down	as	it	needs	to	determine	if	a	given
permission	is	granted!

Creating	your	RBAC

Manage	permissions	with	zend-permissions-rbac

74

When	should	you	create	your	RBAC,	exactly?	And	should	it	contain	all	roles	and
permissions?

In	most	cases,	you	will	be	validating	a	single	user's	permissions.	What's	interesting	about
zend-permissions-rbac	is	that	if	you	know	that	user's	role,	the	permissions	they	have	been
assigned,	and	any	child	roles	(and	their	permissions)	to	which	the	role	belongs,	you	have
everything	you	need.	This	means	that	you	can	do	most	lookups	on-the-fly.

As	such,	you	will	typically	do	the	following:

Create	a	finite	set	of	well-known	roles	and	their	permissions	as	a	global	RBAC.
Add	roles	(and	optionally	permissions)	for	the	current	user.
Validate	the	current	user	against	the	RBAC.

As	an	example,	let's	say	I	have	a	user	Mario	who	has	the	role	"editor",	and	also	adds	the
permission	"update".	If	our	RBAC	is	already	populated	per	the	above	examples,	I	might	do
the	following:

$mario=	new	Role('mario');

$mario->addChild($editor);

$mario->addPermission('update');

$rbac->addRole($mario);

$rbac->isGranted($mario,			'settings');	//	false;	admin	only!

$rbac->isGranted($mario,			'update');			//	true;	mario	only!

$rbac->isGranted('editor',	'update');			//	false;	mario	only!

$rbac->isGranted($mario,			'write');				//	true;	all	editors

$rbac->isGranted($mario,			'read');					//	true;	all	guests

Assigning	roles	to	users
When	you	have	some	sort	of	authentication	system	in	place,	it	will	return	some	sort	of
identity	or	user	instance	generally.	You	will	then	need	to	map	this	to	RBAC	roles.	But	how?

Hopefully,	you	can	store	role	information	wherever	you	persist	your	user	information.	Since
roles	are	essentially	stored	internally	as	strings	by	zend-permissions-rbac,	this	means	that
you	can	store	the	user	role	as	a	discrete	datum	with	your	user	identity.

Once	you	have,	you	have	a	few	options:

Use	the	role	directly	from	your	identity	when	checking	permissions:	e.g.,		$rbac-
>isGranted($identity->getRole(),	'write')	

Create	a		Zend\Permissions\Rbac\Role		instance	(or	other	concrete	class)	with	the	role
fetched	from	the	identity,	and	use	that	for	permissions	checks:		$rbac->isGranted(new

Manage	permissions	with	zend-permissions-rbac

75

Role($identity->getRole()),	'write')	

Update	your	identity	instance	to	implement		Zend\Permissions\Rbac\RoleInterface	,	and
pass	it	directly	to	permissions	checks:		$rbac->isGranted($identity,	'write')	

This	latter	approach	provides	a	nice	solution,	as	it	then	also	allows	you	to	store	specific
permissions	and/or	child	roles	as	part	of	the	user	data.

The		RoleInterface		looks	like	the	following:

Manage	permissions	with	zend-permissions-rbac

76

namespace	Zend\Permissions\Rbac;

use	RecursiveIterator;

interface	RoleInterface	extends	RecursiveIterator

{

				/**

					*	Get	the	name	of	the	role.

					*

					*	@return	string

					*/

				public	function	getName();

				/**

					*	Add	permission	to	the	role.

					*

					*	@param	$name

					*	@return	RoleInterface

					*/

				public	function	addPermission($name);

				/**

					*	Checks	if	a	permission	exists	for	this	role	or	any	child	roles.

					*

					*	@param		string	$name

					*	@return	bool

					*/

				public	function	hasPermission($name);

				/**

					*	Add	a	child.

					*

					*	@param		RoleInterface|string	$child

					*	@return	Role

					*/

				public	function	addChild($child);

				/**

					*	@param		RoleInterface	$parent

					*	@return	RoleInterface

					*/

				public	function	setParent($parent);

				/**

					*	@return	null|RoleInterface

					*/

				public	function	getParent();

}

Manage	permissions	with	zend-permissions-rbac

77

The		Zend\Permissions\Rbac\AbstractRole		contains	basic	implementations	of	most	methods
of	the	interface,	including	logic	for	querying	child	permissions,	so	we	suggest	inheriting	from
that	if	you	can.

As	an	example,	you	could	store	the	permissions	as	a	comma-separated	string	and	the
parent	role	as	a	string	internally	when	creating	your	identity	instance:

use	Zend\Permissions\Rbac\AbstractRole;

use	Zend\Permissions\Rbac\RoleInterface;

use	Zend\Permissions\Rbac\Role;

class	Identity	extends	AbstractRole

{

				/**

					*	@param	string	$username

					*	@param	string	$role

					*	@param	array	$permissions

					*	@param	array	$childRoles

					*/

				public	function	__construct(

								string	$username,

								array	$permissions	=	[],

								array	$childRoles	=	[]

)	{

								//	$name	is	defined	in	AbstractRole

								$this->name	=	$username;

								foreach	($this->permissions	as	$permission)	{

												$this->addPermission($permission);

								}

								$childRoles	=	array_merge(['guest'],	$childRoles);

								foreach	($this->childRoles	as	$childRole)	{

												$this->addChild($childRole);

								}

				}

}

Assuming	your	authentication	system	uses	a	database	table,	and	a	lookup	returns	an	array-
like	row	with	the	user	information	on	a	successful	lookup,	you	might	then	seed	your	identity
instance	as	follows:

$identity	=	new	Identity(

				$row['username'],

				explode(',',	$row['permissions']),

				explode(',',	$row['roles'])

);

Manage	permissions	with	zend-permissions-rbac

78

This	approach	allows	you	to	assign	pre-determined	roles	to	individual	users,	while	also
allowing	you	to	add	fine-grained,	individual	permissions!

Custom	assertions
Sometimes	a	static	assertion	is	not	enough.

As	an	example,	we	may	want	to	implement	a	rule	that	the	creator	of	a	content	item	in	our
website	always	has	rights	to	edit	the	item.	How	would	we	implement	that	with	the	above
system?

zend-permissions-rbac	allows	you	to	do	so	via	dynamic	assertions.	Such	assertions	are
classes	that	implement		Zend\Permissions\Rbac\AssertionInterface	,	which	defines	the	single
method		public	function	assert(Rbac	$rbac)	.

For	the	sake	of	this	example,	let's	assume:

The	content	item	is	represented	as	an	object.
The	object	has	a	method		getCreatorUsername()		that	will	return	the	same	username	as
we	might	have	in	our	custom	identity	from	the	previous	example.

Because	we	have	PHP	7	at	our	disposal,	we'll	create	the	assertion	as	an	anonymous	class:

use	Zend\Permissions\Rbac\AssertionInterface;

use	Zend\Permissions\Rbac\Rbac;

use	Zend\Permissions\Rbac\RoleInterface;

$assertion	=	new	class	($identity,	$content)	implements	AssertionInterface	{

				private	$content;

				private	$identity;

				public	function	__construct(RoleInterface	$identity,	$content)

				{

								$this->identity	=	$identity;

								$this->content	=	$content;

				}

				public	function	assert(Rbac	$rbac)

				{

								return	$this->identity->getName()	===	$this->content->getCreatorUsername();

				}

};

$rbac->isGranted($mario,	'edit',	$assertion);	//	returns	true	if	$mario	created	$conte

nt

This	opens	even	more	possibilities	than	inheritance!

Manage	permissions	with	zend-permissions-rbac

79

Summary
zend-permissions-rbac	is	quite	simple	to	operate,	but	that	simplicity	hides	a	great	amount	of
flexibility	and	power;	you	can	create	incredibly	fine-grained	permissions	schemes	for	your
applications	using	this	component!

Footnotes

.	https://docs.zendframework.com/zend-permissions-rbac/	↩1

Manage	permissions	with	zend-permissions-rbac

80

https://docs.zendframework.com/zend-permissions-rbac/

Manage	permissions	with	zend-
permissions-acl
by	Matthew	Weier	O'Phinney

In	the	article	Manage	permissions	with	zend-permissions-rbac,	we	cover	usage	of	Role
Based	Access	Controls	(RBAC).	In	this	article,	we'll	explore	another	option	provided	by	Zend
Framework,	zend-permissions-acl ,	which	implements	Access	Control	Lists	(ACL).

This	post	will	follow	the	same	basic	format	as	the	one	covering	zend-permissions-rbac,
using	the	same	basic	examples.

Installing	zend-permissions-acl
Just	as	you	would	any	of	our	components,	install	zend-permissions-acl	via	Composer:

$	composer	require	zendframework/zend-permissions-acl

The	component	has	no	requirements	at	this	time	other	than	a	PHP	version	of	at	least	5.5.

Vocabulary
In	ACL	systems,	we	have	three	concepts:

a	resource	is	something	to	which	we	control	access.
a	role	is	something	that	will	request	access	to	a	resource.
Each	resource	has	privileges	for	which	access	will	be	requested	to	specific	roles.

As	an	example,	an	author	might	request	to	create	(privilege)	a	blog	post	(resource);	later,	an
editor	(role)	might	request	to	edit	(privilege)	a	blog	post	(resource).

The	chief	difference	to	RBAC	is	that	RBAC	essentially	combines	the	resource	and	privilege
into	a	single	item.	By	separating	them,	you	can	create	a	set	of	discrete	permissions	for	your
entire	application,	and	then	create	roles	with	multiple-inheritance	in	order	to	implement	fine-
grained	permissions.

ACLs

1

Manage	permissions	with	zend-permissions-acl

81

https://mwop.net/

An	ACL	is	created	by	instantiating	the		Acl		class:

use	Zend\Permissions\Acl\Acl;

$acl	=	new	Acl();

Once	that	instance	is	available,	we	can	start	adding	roles,	resources,	and	privileges.

For	this	blog	post,	our	ACL	will	be	used	for	a	content-based	website.

Roles
Roles	are	added	via	the		$acl->addRole()		method.	This	method	takes	either	a	string	role
name,	or	a		Zend\Permissions\Acl\Role\RoleInterface		instance.

Let's	start	with	a	"guest"	role,	that	only	allows	"read"	permissions.

use	Zend\Permissions\Acl\Role\GenericRole	as	Role;

//	Create	some	roles

$guest	=	new	Role('guest');

$acl->addRole($guest);

//	OR

$acl->addRole('guest');

Referencing	roles	and	resources

Roles	are	simply	strings.	We	model	them	as	objects	in	zend-permissions-acl	in	order	to
provide	strong	typing,	but	the	only	requirement	is	that	they	return	a	string	role	name.	As
such,	when	creating	permissions,	you	can	use	either	a	role	instance,	or	the	equivalent
name.

The	same	is	true	for	resources,	which	we	cover	in	a	later	section.

By	default,	zend-permissions-acl	implements	a	whitelist	approach.	A	whitelist	denies
access	to	everything	unless	it	is	explicitly	whitelisted.	(This	is	as	opposed	to	a	blacklist,
where	access	is	allowed	to	everything	unless	it	is	in	the	blacklist.)	Unless	you	really	know
what	you're	doing	we	do	not	suggest	toggling	this;	whitelists	are	widely	regarded	as	a	best
practice	for	security.

What	that	means	is	that,	out	of	the	gate,	while	we	can	do	some	privilege	assertions:

Manage	permissions	with	zend-permissions-acl

82

$acl->isAllowed('guest',	'blog',	'read');

$acl->isAllowed('guest',	'blog',	'write');

these	will	always	return		false	,	denying	access.	So,	we	need	to	start	adding	privileges.

Privileges
Privileges	are	assigned	using		$acl->allow()	.

For	the		guest		role,	we'll	allow	the		read		privilege	on	any	resource:

$acl->allow('guest',	null,	'read');

The	second	argument	to		allow()		is	the	resource	(or	resources);	specifying		null		indicates
the	privilege	applies	to	all	resources.	If	we	re-run	the	above	assertions,	we	get	the	following:

$acl->isAllowed('guest',	'blog',	'read');		//	true

$acl->isAllowed('guest',	'blog',	'write');	//	false

Manage	permissions	with	zend-permissions-acl

83

Unknown	roles	or	resources

One	thing	to	note:	if	either	the	role	or	resource	used	with		isAllowed()		does	not	exist,
this	method	raises	an	exception,	specifically	a
	Zend\Permissions\Acl\Exception\InvalidArgumentException	,	indicating	the	role	or
resource	could	not	be	found.

In	many	situations,	this	may	not	be	what	you	want;	you	may	want	to	handle	non-
existent	roles	and/or	resources	gracefully.	You	could	do	this	in	a	couple	ways.	First,	you
can	test	to	see	if	the	role	or	resource	exists	before	you	check	the	permissions,	using
	hasRole()		and/or		hasResource()	:

if	(!	$acl->hasRole($foo))	{

				//	failed,	due	to	missing	role

}

if	(!	$acl->hasResource($bar))	{

				//	failed,	due	to	missing	resource

}

if	(!	$acl->isAllowed($foo,	$bar,	$privilege))	{

				//	failed,	due	to	invalid	privilege

}

Alternately,	wrap	the		isAllowed()		call	in	a	try/catch	block:

try	{

				if	(!	$acl->isAllowed($foo,	$bar,	$privilege))	{

								//	failed,	due	to	missing	privileges

				}

}	catch	(AclInvalidArgumentException	$e)	{

						//	failed,	due	to	missing	role	or	resource

}

Personally,	I	don't	like	to	use	exceptions	for	application	flow,	so	I	recommend	the	first
solution.	That	said,	in	most	cases,	you	will	be	working	with	a	role	instance	that	you've
just	added	to	the	ACL,	and	should	only	perform	assertions	against	known	resources.

Resources
Now	let's	add	some	actual	resources.	These	are	almost	exactly	like	roles	in	terms	of	usage:
you	create	a		ResourceInterface		instance	to	pass	to	the	ACL,	or,	more	simply,	a	string;
resources	are	added	via	the		$acl->addResource()		method.

Manage	permissions	with	zend-permissions-acl

84

use	Zend\Permissions\Acl\Resource\GenericResource	as	Resource;

$resource	=	new	Resource('blog');

$acl->addResource($resource);

//	OR:

$acl->addResource('blog');

A	resource	is	anything	to	which	you	want	to	apply	permissions.	In	the	remaining	examples	of
this	post,	we'll	use	a	"blog"	as	the	resource,	and	provide	a	variety	of	permissions	related	to
it.

Inheritance
Let's	say	we	want	to	build	on	our	previous	examples,	and	create	an	"editor"	role	that	also
incorporates	the	permissions	of	the	"guest"	role,	and	adds	a	"write"	permission	to	the	"blog"
resource.

Unlike	RBAC,	roles	themselves	contain	no	information	about	inheritance;	instead,	the	ACL
takes	care	of	that	when	you	add	the	role	to	the	ACL:

$editor	=	new	Role('editor');

$acl->addRole($editor,	$guest);	//	OR:

$acl->addRole($editor,	'guest');

The	above	creates	a	new	role,		editor	,	which	inherits	the	permissions	of	our		guest		role.
Now,	let's	add	a	privilege	allowing	editors	to		write		to	our		blog	:

$acl->allow('editor',	'blog',	'write');

With	this	in	place,	let's	do	some	assertions:

$acl->isAllowed('editor',	'blog',	'write');	//	true

$acl->isAllowed('editor',	'blog',	'read');		//	true

$acl->isAllowed('guest',		'blog',	'write');	//	false

Another	role	might	be	a	"reviewer"	who	can	"moderate"	content:

Manage	permissions	with	zend-permissions-acl

85

$acl->addRole('reviewer',	'guest');

$acl->allow('reviewer',	'blog',	'moderate');

$acl->isAllowed('reviewer',	'blog',	'moderate');	//	true

$acl->isAllowed('reviewer',	'blog',	'write');				//	false;	editor	only!

$acl->isAllowed('reviewer',	'blog',	'read');					//	true

$acl->isAllowed('guest',				'blog',	'moderate');	//	false

Let's	create	another,	an	"admin"	who	can	do	all	of	the	above,	but	also	has	permissions	for
"settings":

$acl->addRole('admin',	['guest',	'editor',	'reviewer']);

$acl->allow('admin',	'blog',	'settings');

$acl->isAllowed('admin',				'blog',	'settings');	//	true

$acl->isAllowed('admin',				'blog',	'write');				//	true

$acl->isAllowed('admin',				'blog',	'moderate');	//	true

$acl->isAllowed('admin',				'blog',	'read');					//	true

$acl->isAllowed('editor',			'blog',	'settings');	//	false

$acl->isAllowed('reviewer',	'blog',	'settings');	//	false

$acl->isAllowed('guest',				'blog',	'write');				//	false

Note	that	the		addRole()		call	here	provides	an	array	of	roles	as	the	second	value	this	time;
when	called	this	way,	the	new	role	will	inherit	the	privileges	of	every	role	listed;	this	allows	for
multiple-inheritance	at	the	role	level.

Resource	inheritance

Resource	inheritance	works	exactly	the	same	as	Role	inheritance!	Add	one	or	more
parent	resources	when	calling		addResource()		on	the	ACL,	and	any	privileges	assigned
to	that	parent	resource	will	also	apply	to	the	new	resource.

As	an	example,	I	could	have	a	"news"	section	in	my	website	that	has	the	same	privilege
and	role	schema	as	my	blog:

$acl->addResource('news',	'blog');

Fun	with	privileges!
Privileges	are	assigned	using		allow()	.	Interestingly,	like		addRole()		and		addResource()	,
the	role	and	resource	arguments	presented	may	be	arrays	of	each;	in	fact,	so	can	the
privileges	themselves!

Manage	permissions	with	zend-permissions-acl

86

As	an	example,	we	could	do	the	following:

$acl->allow(

				['reviewer',	'editor'],

				['blog',	'homepage'],

				['write',	'maintenance']

);

This	would	assign	the	"write"	and	"maintenance"	privileges	on	each	of	the	"blog"	and
"homepage"	resources	to	the	"reviewer"	and	"editor"	roles!	Due	to	inheritance,	the	"admin"
role	would	also	gain	these	privileges.

Creating	your	ACL
When	should	you	create	your	ACL,	exactly?	And	should	it	contain	all	roles	and	permissions?

Typically,	you	will	create	a	finite	number	of	application	or	domain	permissions.	In	our	above
examples,	we	could	omit	the		blog		resource	and	apply	the	ACL	only	within	the		blog	
domain	(for	example,	only	within	a	module	of	a	zend-mvc	or	Expressive	application);
alternately,	it	could	be	an	application-wide	ACL,	with	resources	segregated	by	specific
domain	within	the	application.

In	either	case,	you	will	generally:

Create	a	finite	set	of	well-known	roles,	resources,	and	privileges	as	a	global	or	per-
domain	ACL.
Create	a	custom	role	for	the	current	user,	typically	inheriting	from	the	set	of	well-known
roles.
Validate	the	current	user	against	the	ACL.

Unlike	RBAC,	you	typically	will	not	add	custom	permissions	for	a	user.	The	reason	for	this	is
due	to	the	complexity	of	storing	the	combination	of	roles,	resources,	and	privileges	in	a
database.	Storing	roles	is	trivial:

user_id fullname roles

mario Mario editor,reviewer

You	could	then	create	the	role	by	splitting	the		roles		field	and	assigning	each	as	parents:

$acl->addRole($user->getId(),	explode(',',	$user->getRoles());

Manage	permissions	with	zend-permissions-acl

87

However,	for	fine-grained	permissions,	you	would	essentially	need	an	additional	lookup	table
mapping	the	user	to	a	resource	and	list	of	privileges:

user_id resource privileges

mario blog update,delete

mario news update

While	it	can	be	done,	it	is	resource	and	code	intensive.

Putting	it	all	together,	let's	say	the	user	"mario"	has	logged	in,	with	the	role	"editor";	further,
let's	assume	that	the	identity	instance	for	our	user	implements		RoleInterface	.	If	our	ACL	is
already	populated	per	the	above	examples,	I	might	do	the	following:

$acl->addRole($mario,	$mario->getRoles());

$acl->isAllowed($mario,	'blog',	'settings');	//	false;	admin	only!

$acl->isAllowed($mario,	'blog',	'write');				//	true;	all	editors

$acl->isAllowed($mario,	'blog',	'read');					//	true;	all	guests

Now,	let's	say	we've	gone	to	the	work	of	creating	the	join	table	necessary	for	storing	user
ACL	information;	we	might	have	something	like	the	following	to	further	populate	the	ACL:

foreach	($mario->getPrivileges()	as	$resource	=>	$privileges)	{

				$acl->allow($mario,	$resource,	explode(',',	$privileges));

}

We	could	then	do	the	following	assertions:

$acl->isAllowed($mario,			'blog',	'update');	//	true

$acl->isAllowed('editor',	'blog',	'update');	//	false;	mario	only!

$acl->isAllowed($mario,			'blog',	'delete');	//	true

$acl->isAllowed('editor',	'blog',	'delete');	//	false;	mario	only!

Custom	assertions
Fine-grained	as	the	privilege	system	can	be,	sometimes	it's	not	enough.

As	an	example,	we	may	want	to	implement	a	rule	that	the	creator	of	a	content	item	in	our
website	always	has	rights	to	edit	the	item.	How	would	we	implement	that	with	the	above
system?

Manage	permissions	with	zend-permissions-acl

88

zend-permissions-acl	allows	you	to	do	so	via	dynamic	assertions.	Such	assertions	are
classes	that	implement		Zend\Permissions\Acl\Assertion\AssertionInterface	,	which	defines	a
single	method:

namespace	Zend\Permissions\Assertion;

use	Zend\Permissions\Acl\Acl;

use	Zend\Permissions\Acl\Resource\ResourceInterface;

use	Zend\Permissions\Acl\Role\RoleInterface;

interface	AssertionInterface

{

				/**

					*	@return	bool

					*/

				public	function	assert(

								Acl	$acl,

								RoleInterface	$role	=	null,

								ResourceInterface	$resource	=	null,

								$privilege	=	null

);

}

For	the	sake	of	this	example,	let's	assume:

We	cast	our	identity	to	a		RoleInterface		instance	after	retrieval.
The	content	item	is	represented	as	an	object.
The	object	has	a	method		getCreatorUsername()		that	will	return	the	same	username	as
we	might	have	in	our	custom	identity	from	the	previous	example.
If	the	username	is	the	same	as	the	custom	identity,	allow	any	privileges.

Because	we	have	PHP	7	at	our	disposal,	we'll	create	the	assertion	as	an	anonymous	class:

Manage	permissions	with	zend-permissions-acl

89

use	Zend\Permissions\Acl\Acl;

use	Zend\Permissions\Acl\Assertion\AssertionInterface;

use	Zend\Permissions\Acl\Resource\ResourceInterface;

use	Zend\Permissions\Acl\Role\RoleInterface;

$assertion	=	new	class	($identity,	$content)	implements	AssertionInterface	{

				private	$content;

				private	$identity;

				public	function	__construct(RoleInterface	$identity,	$content)

				{

								$this->identity	=	$identity;

								$this->content	=	$content;

				}

				/**

					*	@return	bool

					*/

				public	function	assert(

								Acl	$acl,

								RoleInterface	$role	=	null,

								ResourceInterface	$resource	=	null,

								$privilege	=	null

)	{

								if	(null	===	$role	||	$role->getRoleId()	!==	$this->identity->getRoleId())	{

												return	false;

								}

								if	(null	===	$resource	||	'blog'	!==	$resource->getResourceId())	{

												return	false;

								}

								return	$this->identity->getRoleId()	===	$this->content->getCreatorUsername();

				}

};

//	Attach	the	assertion	to	all	roles	on	the	blog	resource;

//	custom	assertions	are	provided	as	a	fourth	argument	to	allow().

$acl->allow(null,	'blog',	null,	$assertion);

$acl->isAllowed('mario',	'blog',	'edit');	//	returns	true	if	$mario	created	$content

The	above	creates	a	new	assertion	that	will	trigger	for	the	"blog"	resource	when	a	privilege
we	do	not	already	know	about	is	queried.	In	that	particular	case,	if	the	creator	of	our	content
is	the	same	as	the	current	user,	it	will	return		true	,	allowing	access!

By	creating	such	assertions	in-place	with	data	retrieved	at	runtime,	you	can	achieve	an
incredible	amount	of	flexibility	for	your	ACLs.

Manage	permissions	with	zend-permissions-acl

90

Wrapping	up
zend-permissions-acl	provides	a	huge	amount	of	power,	and	the	ability	to	provide	both	role
and	resource	inheritance	can	vastly	simplify	setup	of	complex	ACLs.	Additionally,	the
privilege	system	provides	much-needed	granularity.

If	you	wanted	to	use	ACLs	in	middleware,	the	usage	is	quite	similar	to	zend-permissions-
rbac:	inject	your	ACL	instance	in	your	middleware,	retrieve	your	user	identity	(and	thus	role)
from	the	request,	and	perform	queries	against	the	ACL	using	the	current	middleware	or
route	as	a	resource,	and	either	the	HTTP	method	or	the	domain	action	you	will	perform	as
the	privilege.

The	main	difficulty	with	zend-permissions-acl	is	that	there	is	no	1:1	relationship	between	a
role	and	a	privilege,	which	makes	storing	ACL	information	in	a	database	more	complex.	If
you	find	yourself	struggling	with	that	fact,	you	may	want	to	use	RBAC	instead.

Footnotes

.	https://docs.zendframework.com/zend-permissions-acl/	↩1

Manage	permissions	with	zend-permissions-acl

91

https://docs.zendframework.com/zend-permissions-acl/

Implement	JSON-RPC	with	zend-json-
server
by	Matthew	Weier	O'Phinney

zend-json-server 	provides	a	JSON-RPC 	implementation.	JSON-RPC	is	similar	to	XML-
RPC	or	SOAP	in	that	it	implements	a	Remote	Procedure	Call	server	at	a	single	URI	using	a
predictable	calling	semantic.	Like	each	of	these	other	protocols,	it	provides	the	ability	to
introspect	the	server	in	order	to	determine	what	calls	are	available,	what	arguments	each
call	expects,	and	the	expected	return	value(s);	JSON-RPC	implements	this	via	a	Service
Mapping	Description	(SMD) ,	which	is	usually	available	via	an	HTTP		GET		request	to	the
server.

zend-json-server	was	designed	to	work	standalone,	allowing	you	to	map	a	URL	to	a	specific
script	that	then	handles	the	request:

$server	=	new	Zend\Json\Server\Server();

$server->setClass('Calculator');

//	SMD	request

if	('GET'	===	$_SERVER['REQUEST_METHOD'])	{

				//	Indicate	the	URL	endpoint,	and	the	JSON-RPC	version	used:

				$server->setTarget('/json-rpc')

											->setEnvelope(Zend\Json\Server\Smd::ENV_JSONRPC_2);

				//	Grab	the	SMD

				$smd	=	$server->getServiceMap();

				//	Return	the	SMD	to	the	client

				header('Content-Type:	application/json');

				echo	$smd;

				return;

}

//	Normal	request

$server->handle();

What	the	above	example	does	is:

Create	a	server.
Attach	a	class	or	object	to	the	server.	The	server	introspects	that	class	in	order	to
expose	any	public	methods	on	it	as	calls	on	the	server	itself.
If	an	HTTP		GET		request	occurs,	we	present	the	service	mapping	description.

1 2

3

Implement	JSON-RPC	with	zend-json-server

92

https://mwop.net/

Otherwise,	we	attempt	to	handle	the	request.

All	server	components	in	Zend	Framework	work	similar	to	the	above.	Introspection	via
function	or	class	reflection	allows	quickly	creating	and	exposing	services	via	these	servers,
as	well	as	enables	the	servers	to	provide	SMD,	WSDL,	or	XML-RPC	system	information.

However,	this	approach	can	lead	to	difficulties:

What	if	I	need	access	to	other	application	services?	or	want	to	use	the	fully-configured
application	dependency	injection	container?
What	if	I	want	to	be	able	to	control	the	URI	via	a	router?
What	if	I	want	to	be	able	to	add	authentication	or	authorization	in	front	of	the	server?

In	other	words,	how	do	I	use	the	JSON-RPC	server	as	part	of	a	larger	application?

Below,	I'll	outline	using	zend-json-server	in	both	a	Zend	Framework	MVC	application,	as	well
as	via	PSR-7	middleware.	In	both	cases,	you	may	assume	that		Acme\ServiceModel		is	a
class	exposing	public	methods	we	wish	to	expose	via	the	server.

Using	zend-json-server	within	zend-mvc
To	use	zend-json-server	within	a	zend-mvc	application,	you	will	need	to:

Provide	a		Zend\Json\Server\Response		instance	to	the		Server		instance.
Tell	the		Server		instance	to	return	the	response.
Populate	the	MVC's	response	from	the		Server	's	response.
Return	the	MVC	response	(which	will	short-circuit	the	view	layer).

This	third	step	requires	a	bit	of	logic,	as	the	default	response	type,
	Zend\Json\Server\Response\Http	,	does	some	logic	around	setting	headers	that	you'll	need	to
duplicate.

A	full	example	will	look	like	the	following:

Implement	JSON-RPC	with	zend-json-server

93

namespace	Acme\Controller;

use	Acme\ServiceModel;

use	Zend\Json\Server\Response	as	JsonResponse;

use	Zend\Json\Server\Server	as	JsonServer;

use	Zend\Mvc\Controller\AbstractActionController;

class	JsonRpcController	extends	AbstractActionController

{

				private	$model;

				public	function	__construct(ServiceModel	$model)

				{

								$this->model	=	$model;

				}

				public	function	endpointAction()

				{

								$server	=	new	JsonServer();

								$server

												->setClass($this->model)

												->setResponse(new	JsonResponse())

												->setReturnResponse();

								/**	@var	JsonResponse	$jsonRpcResponse	*/

								$jsonRpcResponse	=	$server->handle();

								/**	@var	\Zend\Http\Response	$response	*/

								$response	=	$this->getResponse();

								//	Do	we	have	an	empty	response?

								if	(!	$jsonRpcResponse->isError()

												&&	null	===	$jsonRpcResponse->getId()

)	{

												$response->setStatusCode(204);

												return	$response;

								}

								//	Set	the	content-type

								$contentType	=	'application/json-rpc';

								if	(null	!==	($smd	=	$jsonRpcResponse->getServiceMap()))	{

												//	SMD	is	being	returned;	use	alternate	content	type,	if	present

												$contentType	=	$smd->getContentType()	?:	$contentType;

								}

								//	Set	the	headers	and	content

								$response->getHeaders()->addHeaderLine('Content-Type',	$contentType);

								$response->setContent($jsonRpcResponse->toJson());

								return	$response;

				}

}

Implement	JSON-RPC	with	zend-json-server

94

Inject	your	dependencies!

You'll	note	that	the	above	example	accepts	the		Acme\ServiceModel		instance	via	its
constructor.	This	means	that	you	will	need	to	provide	a	factory	for	your	controller,	to
ensure	that	it	is	injected	with	a	fully	configured	instance	—	and	that	likely	also	means	a
factory	for	the	model,	too.

To	simplify	this,	you	may	want	to	check	out	the	ConfigAbstractFactory 	or
ReflectionBasedAbstractFactory ,	both	of	which	were	introduced	in	version	3.2.0	of
zend-servicemanager.

Using	zend-json-server	within	PSR-7
middleware
Using	zend-json-server	within	PSR-7	middleware	is	similar	to	zend-mvc:

Provide	a		Zend\Json\Server\Response		instance	to	the		Server		instance.
Tell	the		Server		instance	to	return	the	response.
Create	and	return	a	PSR-7	response	based	on	the		Server	's	response.

The	code	ends	up	looking	like	the	following:

namespace	Acme\Controller;

use	Acme\ServiceModel;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\EmptyResponse;

use	Zend\Diactoros\Response\TextResponse;

use	Zend\Json\Server\Response	as	JsonResponse;

use	Zend\Json\Server\Server	as	JsonServer;

class	JsonRpcMiddleware

{

				private	$model;

				public	function	__construct(ServiceModel	$model)

				{

								$this->model	=	$model;

				}

				public	function	__invoke(

								ServerRequestInterface	$request,

								ResponseInterface	$response,

								callable	$next

)	{

								$server	=	new	JsonServer();

4
5

Implement	JSON-RPC	with	zend-json-server

95

								$server

												->setClass($this->model)

												->setResponse(new	JsonResponse())

												->setReturnResponse();

								/**	@var	JsonResponse	$jsonRpcResponse	*/

								$jsonRpcResponse	=	$server->handle();

								//	Do	we	have	an	empty	response?

								if	(!	$jsonRpcResponse->isError()

												&&	null	===	$jsonRpcResponse->getId()

)	{

												return	new	EmptyResponse();

								}

								//	Get	the	content-type

								$contentType	=	'application/json-rpc';

								if	(null	!==	($smd	=	$jsonRpcResponse->getServiceMap()))	{

												//	SMD	is	being	returned;	use	alternate	content	type,	if	present

												$contentType	=	$smd->getContentType()	?:	$contentType;

								}

								return	new	TextResponse(

												$jsonRpcResponse->toJson(),

												200,

												['Content-Type'	=>	$contentType]

);

				}

}

In	the	above	example,	I	use	a	couple	of	zend-diactoros -specific	response	types	to	ensure
that	we	have	no	extraneous	information	in	the	returned	responses.	I	use		TextResponse	
specifically,	as	the		toJson()		method	on	the	zend-json-server	response	returns	the	actual
JSON	string,	versus	a	data	structure	that	can	be	cast	to	JSON.

Per	the	note	above,	you	will	need	to	configure	your	dependency	injection	container	to	inject
the	middleware	instance	with	the	model.

Summary
zend-json-server	provides	a	flexible,	robust,	and	simple	way	to	create	JSON-RPC	services.
The	design	of	the	component	makes	it	possible	to	use	it	standalone,	or	within	any
application	framework	you	might	be	using.	Hopefully	the	examples	above	will	aid	you	in
adapting	it	for	use	within	your	own	application!

6

7

Implement	JSON-RPC	with	zend-json-server

96

Visit	the	zend-json-server	documentation 	to	find	out	what	else	you	might	be	able	to	do	with
this	component!

Footnotes

.	https://docs.zendframework.com/zend-json-server/	↩

.	http://groups.google.com/group/json-rpc/	↩

.	http://www.jsonrpc.org/specification	↩

.	https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/	↩

.	https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/	↩

.	https://docs.zendframework.com/zend-diactoros	↩

.	https://docs.zendframework.com/zend-json-server/	↩

7

1

2

3

4

5

6

7

Implement	JSON-RPC	with	zend-json-server

97

https://docs.zendframework.com/zend-json-server/
http://groups.google.com/group/json-rpc/
http://www.jsonrpc.org/specification
https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/
https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/
https://docs.zendframework.com/zend-diactoros
https://docs.zendframework.com/zend-json-server/

Implement	an	XML-RPC	server	with	zend-
xmlrpc
by	Matthew	Weier	O'Phinney

zend-xmlrpc 	provides	a	full-featured	XML-RPC 	client	and	server	implementation.	XML-
RPC	is	a	Remote	Procedure	Call	protocol	using	HTTP	as	the	transport	and	XML	for
encoding	the	requests	and	responses.

Each	XML-RPC	request	consists	of	a	method	call,	which	names	the	procedure
(methodName)	to	call,	along	with	its	parameters.	The	server	then	returns	a	response,	the
value	returned	by	the	procedure.

As	an	example	of	a	request:

POST	/xml-rpc	HTTP/1.1

Host:	api.example.com

Content-Type:	text/xml

<?xml	version="1.0"?>

<methodCall>

				<methodName>add</methodName>

				<params>

								<param>

												<value><i4>20</i4></value>

								</param>

								<param>

												<value><i4>22</i4></value>

								</param>

				</params>

</methodCall>

The	above	is	essentially	requesting		add(20,	22)		from	the	server.

A	response	might	look	like	this:

1 2

Implement	an	XML-RPC	server	with	zend-xmlrpc

98

https://mwop.net/

HTTP/1.1	200	OK

Connection:	close

Content-Type:	text/xml

<?xml	version="1.0"?>

<methodResponse>

				<params>

								<param>

												<value><i4>42</i4></value>

								</param>

				</params>

</methodResponse>

In	the	case	of	an	error,	you	get	a	fault	response,	detailing	the	problem:

HTTP/1.1	200	OK

Connection:	close

Content-Type:	text/xml

<?xml	version="1.0"?>

<methodResponse>

				<fault>

								<value>

												<struct>

																<member>

																				<name>faultCode</name>

																				<value><int>4</int></value>

																</member>

																<member>

																				<name>faultString</name>

																				<value><string>Too	few	parameters.</string></value>

																</member>

												</struct>

								</value>

				</fault>

</methodResponse>

Content-Length

The	specification	indicates	that	the		Content-Length		header	must	be	present	in	both
requests	and	responses,	and	must	be	correct.	I	have	yet	to	work	with	any	XML-RPC
clients	or	servers	that	followed	this	restriction.

Values

Implement	an	XML-RPC	server	with	zend-xmlrpc

99

XML-RPC	is	meant	to	be	intentionally	simple,	and	support	simple	procedural	operations	with
a	limited	set	of	allowed	values.	It	predates	JSON,	but	similarly	defines	a	restricted	list	of
allowed	value	types	in	order	to	allow	representing	almost	any	data	structure	—	and	note	that
term,	data	structure.	Typed	objects	with	behavior	are	never	transferred,	only	data.	(This	is
how	SOAP	differentiates	from	XML-RPC.)

Knowing	what	value	types	may	be	transmitted	over	XML-RPC	allows	you	to	determine
whether	or	not	it's	a	good	fit	for	your	web	service	platform.

The	values	allowed	include:

Integers,	via	either		<int>		or		<i4>		tags.	(<i4>		points	to	the	fact	that	the	specification
restricts	integers	to	four-byte	signed	integers.)
Booleans,	via		<boolean>	;	the	values	are	either		0		or		1	.
Strings,	via		<string>	.
Floats	or	doubles,	via		<double>	.
Date/Time	values,	in	ISO-8601	format,	via		<dateTime.iso8601>	.
Base64-encoded	binary	values,	via		<base64>	.

There	are	also	two	composite	value	types,		<struct>		and		<array>	.	A		<struct>		contains
	<member>		values,	which	in	turn	contain	a		<name>		and	a		<value>	:

<struct>

				<member>

								<name>minimum</name>

								<value><int>0</int></value>

				</member>

				<member>

								<name>maximum</name>

								<value><int>100</int></value>

				</member>

</struct>

These	can	be	visualized	as	associative	arrays	in	PHP.

An		<array>		consists	of	a		<data>		element	containing	any	number	of		<value>		items:

<array>

				<data>

								<value><int>0</int></value>

								<value><int>10</int></value>

								<value><int>20</int></value>

								<value><int>30</int></value>

								<value><int>50</int></value>

				</data>

</array>

Implement	an	XML-RPC	server	with	zend-xmlrpc

100

The	values	within	an	array	or	a	struct	do	not	need	to	be	of	the	same	type,	which	makes	them
very	suitable	for	translating	to	PHP	structures.

While	these	values	are	easy	enough	to	create	and	parse,	doing	so	manually	leads	to	a	lot	of
overhead,	particularly	if	you	want	to	ensure	that	your	server	and/or	client	is	robust.	zend-
xmlrpc	provides	all	the	tools	to	work	with	this

Automatically	serving	class	methods
To	simplify	creating	servers,	zend-xmlrpc	uses	PHP's	Reflection	API 	to	scan	functions	and
class	methods	in	order	to	expose	them	as	XML-RPC	services.	This	allows	you	to	add	an
arbitrary	number	of	methods	to	your	XML-RPC	server,	which	can	them	be	handled	via	a
single	endpoint.

In	vanilla	PHP,	this	then	looks	like:

$server	=	new	Zend\XmlRpc\Server;

$server->setClass('Calculator');

echo	$server->handle();

Internally,	zend-xmlrpc	will	take	care	of	type	conversions	from	the	incoming	request.	To	do
so,	however,	you	may	need	to	document	your	types	using	slightly	different	notation	within
your	docblocks.	As	examples,	the	following	types	do	not	have	direct	analogues	in	PHP:

dateTime.iso8601
base64
struct

If	you	want	to	accept	or	return	any	of	these	types,	document	them:

/**

	*	@param	dateTime.iso8601	$data

	*	@param	base64	$data

	*	@param	struct	$map

	*	@return	base64

	*/

function	methodWithOddParameters($date,	$data,	array	$map)

{

}

3

Implement	an	XML-RPC	server	with	zend-xmlrpc

101

Structs

zend-xmlrpc	does	contain	logic	to	determine	if	an	array	value	is	an	indexed	array	or	an
associative	array,	and	will	generally	properly	convert	these.	However,	we	still
recommend	documenting	the	more	specific	types	as	noted	above	for	purposes	of	using
the		system.methodHelp		functionality,	which	is	detailed	below.

You	may	also	add	functions:

$server->addFunction('add');

A	server	can	accept	multiple	functions	and	classes.	However,	be	aware	that	when	doing	so,
you	need	to	be	careful	about	naming	conflicts.	Fortunately,	zend-xmlrpc	has	ways	to	resolve
those,	as	well!

If	you	look	at	many	XML-RPC	examples,	they	will	use	method	names	such	as
	calculator.add		or		transaction.process	.	zend-xmlrpc,	when	performing	reflection,	uses	the
method	or	function	name	by	default,	which	will	be	the	portion	following	the		.		in	the
previous	examples.	However,	you	can	also	namespace	these,	using	an	additional	argument
to	either		addFunction()		or		setClass()	:

//	Exposes	Calculator	methods	under	calculator.*:

$server->setClass('Calculator',	'calculator');		

//	Exposes	transaction.process:

$server->addFunction('process',	'transaction');

This	can	be	particularly	useful	when	exposing	multiple	classes	that	may	expose	the	same
method	names.

Server	introspection
While	not	an	official	part	of	the	standard,	many	servers	and	clients	support	the	XML-RPC
Introspection	protocol .	The	protocol	defines	three	methods:

	system.listMethods	,	which	returns	a	struct	of	methods	supported	by	the	server.
	system.methodSignature	,	which	returns	a	struct	detailing	the	arguments	to	the
requested	method.
	system.methodHelp	,	which	returns	a	string	description	of	the	requested	method.

The	server	implementation	in	zend-xmlrpc	supports	these	out-of-the-box,	allowing	your
clients	to	get	information	on	exposed	services!

4

Implement	an	XML-RPC	server	with	zend-xmlrpc

102

zend-xmlrpc	client	and	introspection

The	client	exposed	within	zend-xmlrpc	will	natively	use	the	introspection	protocol	in
order	to	provide	a	fluent,	method-like	way	of	invoking	XML-RPC	methods:

$client	=	new	Zend\XmlRpc\Client('https://xmlrpc.example.com/');

$service	=	$client->getProxy();													//	invokes	introspection!

$value	=	$service->calculator->add(20,	22);	//	invokes	calculator.add(20,	22)

Faults	and	exceptions
By	default,	zend-xmlrpc	catches	exceptions	in	your	service	classes,	and	raises	fault
responses.	However,	these	fault	responses	omit	the	exception	details	by	default,	to	prevent
leaking	sensitive	information.

You	can,	however,	whitelist	exception	types	with	the	server:

use	App\Exception;

use	Zend\XmlRpc\Server\Fault;

Fault::attachFaultException(Exception\InvalidArgumentException::class);

When	you	do	so,	the	exception	code	and	message	will	be	used	to	generate	the	fault
response.	Note:	any	exception	in	that	particular	inheritance	hierarchy	will	then	be	exposed
as	well!

Integrating	with	zend-mvc
The	above	examples	all	demonstrate	usage	in	standalone	scripts;	what	if	you	want	to	use
the	server	inside	zend-mvc?

To	do	so,	we	need	to	do	two	things	differently:

We	need	to	create	our	own		Zend\XmlRpc\Request		and	seed	it	from	the	MVC	request
content.
We	need	to	cast	the	response	returned	by		Zend\XmlRpc\Server::handle()		to	an	MVC
response.

Implement	an	XML-RPC	server	with	zend-xmlrpc

103

namespace	Acme\Controller;

use	Acme\Model\Calculator;

use	Zend\XmlRpc\Request	as	XmlRpcRequest;

use	Zend\XmlRpc\Response	as	XmlRpcResponse;

use	Zend\XmlRpc\Server	as	XmlRpcServer;

use	Zend\Mvc\Controller\AbstractActionController;

class	XmlRpcController	extends	AbstractActionController

{

				private	$calculator;

				public	function	__construct(Calculator	$calculator)

				{

								$this->calculator	=	$calculator;

				}

				public	function	endpointAction()

				{

								/**	@var	\Zend\Http\Request	$request	*/

								$request	=	$this->getRequest();

								//	Seed	the	XML-RPC	request

								$xmlRpcRequest	=	new	XmlRpcRequest();

								$xmlRpcRequest->loadXml($request->getContent());

								//	Create	the	server

								$server	=	new	XmlRpcServer();

								$server->setClass($this->calculator,	'calculator');

								/**	@var	XmlRpcResponse	$xmlRpcResponse	*/

								$xmlRpcResponse	=	$server->handle($xmlRpcRequest);

								/**	@var	\Zend\Http\Response	$response	*/

								$response	=	$this->getResponse();

								//	Set	the	headers	and	content

								$response->getHeaders()->addHeaderLine('Content-Type',	'text/xml');

								$response->setContent($xmlRpcResponse->saveXml());

								return	$response;

				}

}

Implement	an	XML-RPC	server	with	zend-xmlrpc

104

Inject	your	dependencies!

You'll	note	that	the	above	example	accepts	the		Acme\Model\Calculator		instance	via	its
constructor.	This	means	that	you	will	need	to	provide	a	factory	for	your	controller,	to
ensure	that	it	is	injected	with	a	fully	configured	instance	—	and	that	likely	also	means	a
factory	for	the	model,	too.

To	simplify	this,	you	may	want	to	check	out	the	ConfigAbstractFactory 	or
ReflectionBasedAbstractFactory ,	both	of	which	were	introduced	in	version	3.2.0	of
zend-servicemanager.

Using	zend-xmlrpc's	server	within	PSR-7
middleware
Using	the	zend-xmlrpc	server	within	PSR-7	middleware	is	similar	to	zend-mvc.

5
6

Implement	an	XML-RPC	server	with	zend-xmlrpc

105

namespace	Acme\Controller;

use	Acme\Model\Calculator;

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\HtmlResponse;

use	Zend\XmlRpc\Request	as	XmlRpcRequest;

use	Zend\XmlRpc\Response	as	XmlRpcResponse;

use	Zend\XmlRpc\Server	as	XmlRpcServer;

class	XmlRpcMiddleware

{

				private	$calculator;

				public	function	__construct(Calculator	$calculator)

				{

								$this->calculator	=	$calculator;

				}

				public	function	__invoke(

								ServerRequestInterface	$request,

								ResponseInterface	$response,

								callable	$next

)	{

								//	Seed	the	XML-RPC	request

								$xmlRpcRequest	=	new	XmlRpcRequest();

								$xmlRpcRequest->loadXml((string)	$request->getBody());

								$server	=	new	XmlRpcServer();

								$server->setClass($this->calculator,	'calculator');

								/**	@var	XmlRpcResponse	$xmlRpcResponse	*/

								$xmlRpcResponse	=	$server->handle($xmlRpcRequest);

								return	new	HtmlResponse(

												$xmlRpcResponse->saveXml(),

												200,

												['Content-Type'	=>	'text/xml']

);

				}

}

In	the	above	example,	I	use	the	zend-diactoros -specific		HtmlResponse		type	to	generate	the
response;	this	could	be	any	other	response	type,	as	long	as	the		Content-Type		header	is	set
correctly,	and	the	status	code	is	set	to	200.

Per	the	note	above,	you	will	need	to	configure	your	dependency	injection	container	to	inject
the	middleware	instance	with	the	model.

7

Implement	an	XML-RPC	server	with	zend-xmlrpc

106

Summary
While	XML-RPC	may	not	be	du	jour,	it	is	a	tried	and	true	method	of	exposing	web	services
that	has	persisted	for	close	to	two	decades.	zend-xmlrpc's	server	implementation	provides	a
flexible,	robust,	and	simple	way	to	create	XML-RPC	services	around	the	classes	and
functions	you	define	in	PHP,	making	it	possible	to	use	it	standalone,	or	within	any	application
framework	you	might	be	using.	Hopefully	the	examples	above	will	aid	you	in	adapting	it	for
use	within	your	own	application!

Visit	the	zend-xmlrpc	server	documentation 	to	find	out	what	else	you	might	be	able	to	do
with	this	component.

Footnotes

.	https://docs.zendframework.com/zend-xmlrpc/	↩

.	http://xmlrpc.scripting.com/spec.html	↩

.	http://php.net/Reflection	↩

.	http://xmlrpc-c.sourceforge.net/introspection.html	↩

.	https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/	↩

.	https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/	↩

.	https://docs.zendframework.com/zend-diactoros	↩

.	https://docs.zendframework.com/zend-xmlrpc/server/	↩

8

1

2

3

4

5

6

7

8

Implement	an	XML-RPC	server	with	zend-xmlrpc

107

https://docs.zendframework.com/zend-xmlrpc/
http://xmlrpc.scripting.com/spec.html
http://php.net/Reflection
http://xmlrpc-c.sourceforge.net/introspection.html
https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/
https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/
https://docs.zendframework.com/zend-diactoros
https://docs.zendframework.com/zend-xmlrpc/server/

Implement	a	SOAP	server	with	zend-soap
by	Matthew	Weier	O'Phinney

zend-soap 	provides	a	full-featured	SOAP 	implementation.	SOAP	is	an	XML-based	web
protocol	designed	to	allow	describing	messages,	and,	optionally,	operations	to	perform.	It's
similar	to	XML-RPC,	but	with	a	few	key	differences:

Arbitrary	data	structures	may	be	described;	you	are	not	limited	to	the	basic	scalar,	list,
and	struct	types	of	XML-RPC.	Messages	are	often	serializations	of	specific	object	types
on	either	or	both	the	client	and	server.	The	SOAP	message	may	include	information	on
its	own	structure	to	allow	the	server	or	client	to	determine	how	to	interpret	the	message.

Multiple	operations	may	be	described	in	a	message	as	well,	versus	the	one	call,	one
operation	structure	of	XML-RPC.

In	other	words,	it's	an	extensible	protocol.	This	provides	obvious	benefits,	but	also	a
disadvantage:	creating	and	parsing	SOAP	messages	can	quickly	become	quite	complex!

To	alleviate	that	complexity,	Zend	Framework	provides	the	zend-soap	component,	which
includes	a	server	implementation.

Why	these	articles	on	RPC	services?

We	love	REST;	one	of	our	projects	is	Apigility ,	which	allows	you	to	simply	and	quickly
build	REST	APIs.	However,	there	are	occasions	where	RPC	may	be	a	better	fit:

If	your	services	are	less	resource	oriented,	and	more	function	oriented	(e.g.,
providing	calculations).

If	consumers	of	your	services	may	need	more	uniformity	in	the	service	architecture
in	order	to	ensure	they	can	quickly	and	easily	consume	the	services,	without
needing	to	create	unique	tooling	for	each	service	exposed.	While	the	goal	of	REST
is	to	offer	discovery,	when	every	payload	to	send	or	receive	is	different,	this	can
often	lead	to	an	explosion	of	code	when	consuming	many	services.

Some	organizations	and	companies	may	standardize	on	certain	web	service
protocols	due	to	existing	tooling,	ability	to	train	developers,	etc.

While	REST	may	be	the	preferred	way	to	architect	web	services,	these	and	other
reasons	often	dictate	other	approaches.	As	such,	we	provide	these	RPC	alternatives	for
PHP	developers.

1 2

3

Implement	a	SOAP	server	with	zend-soap

108

https://mwop.net/

What	benefits	does	it	offer	over	the	PHP
extension?
PHP	provides	SOAP	client	and	server	capabilities	already	via	its	SOAP	extension ;	why	do
we	offer	a	component?

By	default,	PHP's		SoapServer::handle()		will:

Grab	the	POST	body	(php://input),	unless	an	XML	string	is	passed	to	it.
Emit	the	headers	and	SOAP	XML	response	body	to	the	output	buffer.

Exceptions	or	PHP	errors	raised	during	processing	may	result	in	a	SOAP	fault	response,
with	no	details,	or	can	result	in	invalid/empty	SOAP	responses	returned	to	the	client.

The	primary	benefit	zend-soap	provides,	then,	is	error	handling.	You	can	whitelist	exception
types,	and,	when	encountered,	fault	responses	containing	the	exception	details	will	be
returned.	PHP	errors	will	be	emitted	as	SOAP	faults.

The	next	thing	that	zend-soap	offers	is	WSDL	generation.	WSDL	allows	you	to	describe	the
web	services	you	offer,	so	that	clients	know	how	to	work	with	your	services.	ext/soap
provides	no	functionality	around	creating	WSDL;	it	simply	expects	that	you	will	have	a	valid
one	for	use	with	the	client	or	server.

zend-soap	provides	an		AutoDiscover		class	that	uses	reflection	on	the	classes	and	functions
you	pass	it	in	order	to	build	a	valid	WSDL	for	you;	you	can	then	provide	this	to	your	server
and	your	clients.

Creating	a	server
There	are	two	parts	to	providing	a	SOAP	server:

Providing	the	server	itself,	which	will	handle	requests.
Providing	the	WSDL.

Building	each	follows	the	same	process;	you	simply	emit	them	with	different	HTTP		Content-
Type		headers,	and	under	different	HTTP	methods	(the	server	will	always	react	to	POST
requests,	while	WSDL	should	be	available	via	GET).

First,	let's	define	a	function	for	populating	a	server	instance	with	classes	and	functions:

4

Implement	a	SOAP	server	with	zend-soap

109

use	Acme\Model;

function	populateServer($server,	array	$env)

{

				//	Expose	a	class	and	its	methods:

				$server->setClass(Model\Calculator::class);

				//	Or	expose	an	object	instance	and	its	methods.

				//	However,	this	only	works	for	Zend\Soap\Server,	not	AutoDiscover,	so

				//	should	not	be	used	here.

				//	$server->setObject(new	Model\Env($env));

				//	Expose	a	function:

				$server->addFunction('Acme\Model\ping');

}

Note	that		$server		is	not	type-hinted;	the	rationale	for	this	decision	will	become	more
obvious	soon.

Now,	let's	assume	that	the	above	function	is	available	to	us,	and	use	it	to	create	our	WSDL:

//	File	/soap/wsdl.php

use	Zend\Soap\AutoDiscover;

if	($_SERVER['REQUEST_METHOD']	!==	'GET')	{

				//	Only	handle	GET	requests

				header('HTTP/1.1	400	Client	Error');

				exit;

}

$wsdl	=	new	AutoDiscover();

populateServer($wsdl,	$_ENV);

$wsdl->handle();

Done!	The	above	will	emit	the	WSDL	for	either	the	client	or	server	to	consume.

Now,	let's	create	the	server.	The	server	requires	a	few	things:

The	public,	HTTP-accessible	location	of	the	WSDL.
	SoapServer		options,	including	the		actor		URI	for	the	server	and	SOAP	version
targeted.

Additionally,	we'll	need	to	notify	the	server	of	its	capabilities,	via	the		populateServer()	
function.

Implement	a	SOAP	server	with	zend-soap

110

//	File	/soap/server.php

use	Zend\Soap\Server;

if	($_SERVER['REQUEST_METHOD']	!==	'POST')	{

				//	Only	handle	POST	requests

				header('HTTP/1.1	400	Client	Error');

				exit;

}

$server	=	new	Server(dirname($_SERVER['REQUEST_URI'])	.	'/wsdl.php',	[

				'actor'	=>	$_SERVER['REQUEST_URI'],

]);

populateServer($server,	$_ENV);

$server->handle();

The	reason	for	the	lack	of	type-hint	should	now	be	clear;	both	the		Server		and
	AutoDiscover		classes	have	the	same	API	for	populating	the	instances	with	classes,	objects,
and	functions;	having	a	common	function	for	doing	so	allows	us	to	ensure	the	WSDL	and
server	do	not	go	out	of	sync.

From	here,	you	can	point	your	clients	at		/soap/server.php		on	your	domain,	and	they	will
have	all	the	information	they	need	to	work	with	your	service.

setObject()

	Zend\Soap\Server		also	exposes	a		setObject()		method,	which	will	take	an	object
instance,	reflect	it,	and	expose	its	public	methods	to	the	server.	However,	this	method	is
only	available	in	the		Server		class,	not	the		AutoDiscover		class.

As	such,	if	you	want	to	create	logic	that	can	be	re-used	between	the		Server		and
	AutoDiscover		instances,	you	must	confine	your	usage	to		setClass()	.	If	that	class
requires	constructor	arguments	or	other	ways	of	setting	instance	state,	you	should	vary
the	logic	for	creation	of	the	WSDL	via		AutoDiscover		and	creation	of	the	server	via
	Server	.

Using	zend-soap	within	a	zend-mvc	application
The	above	details	an	approach	using	vanilla	PHP;	what	about	using	zend-soap	within	a
zend-mvc	context?

To	do	this,	we'll	need	to	learn	a	few	more	things.

Implement	a	SOAP	server	with	zend-soap

111

First,	you	can	provide		Server::handle()		with	the	request	to	process.	This	must	be	one	of
the	following:

a		DOMDocument	
a		DOMNode	
a		SimpleXMLElement	
an	object	implementing		__toString()	,	where	that	method	returns	an	XML	string
an	XML	string

We	can	grab	this	information	from	the	MVC	request	instance's	body	content.

Second,	we	will	need	the	server	to	return	the	response,	so	we	can	use	it	to	populate	the
MVC	response	instance.	We	can	do	that	by	calling		Server::setReturnResponse(true)	.	When
we	do,		Server::handle()		will	return	an	XML	string	representing	the	SOAP	response
message.

Let's	put	it	all	together:

namespace	Acme\Controller;

use	Acme\Model;

use	Zend\Soap\AutoDiscover	as	WsdlAutoDiscover;

use	Zend\Soap\Server	as	SoapServer;

use	Zend\Mvc\Controller\AbstractActionController;

class	SoapController	extends	AbstractActionController

{

				private	$env;

				public	function	__construct(Model\Env	$env)

				{

								$this->env	=	$env;

				}

				public	function	wsdlAction()

				{

								/**	@var	\Zend\Http\Request	$request	*/

								$request	=	$this->getRequest();

								if	(!	$request->isGet())	{

												return	$this->prepareClientErrorResponse('GET');

								}

								$wsdl	=	new	WsdlAutoDiscover();

								$this->populateServer($wsdl);

								/**	@var	\Zend\Http\Response	$response	*/

								$response	=	$this->getResponse();

								$response->getHeaders()->addHeaderLine('Content-Type',	'application/wsdl+xml')

Implement	a	SOAP	server	with	zend-soap

112

;

								$response->setContent($wsdl->toXml());

								return	$response;

				}

				public	function	serverAction()

				{

								/**	@var	\Zend\Http\Request	$request	*/

								$request	=	$this->getRequest();

								if	(!	$request->isPost())	{

												return	$this->prepareClientErrorResponse('POST');

								}

								//	Create	the	server

								$server	=	new	SoapServer(

												$this->url()

																->fromRoute('soap/wsdl',	[],	['force_canonical'	=>	true]),

												[

																'actor'	=>	$this->url()

																				->fromRoute('soap/server',	[],	['force_canonical'	=>	true]),

]

);

								$server->setReturnResponse(true);

								$this->populateServer($server);

								$soapResponse	=	$server->handle($request->getContent());

								/**	@var	\Zend\Http\Response	$response	*/

								$response	=	$this->getResponse();

								//	Set	the	headers	and	content

								$response->getHeaders()->addHeaderLine('Content-Type',	'application/soap+xml')

;

								$response->setContent($soapResponse);

								return	$response;

				}

				private	function	prepareClientErrorResponse($allowed)

				{

								/**	@var	\Zend\Http\Response	$response	*/

								$response	=	$this->getResponse();

								$response->setStatusCode(405);

								$response->getHeaders()->addHeaderLine('Allow',	$allowed);

								return	$response;

				}

				private	function	populateServer($server)

				{

								//	Expose	a	class	and	its	methods:

								$server->setClass(Model\Calculator::class);

								//	Expose	an	object	instance	and	its	methods:

Implement	a	SOAP	server	with	zend-soap

113

								$server->setObject($this->env);

								//	Expose	a	function:

								$server->addFunction('Acme\Model\ping');

				}

}

The	above	assumes	you've	created	routes		soap/server		and		soap/wsdl	,	and	uses	those	to
generate	the	URIs	for	the	server	and	WSDL,	respectively;	the		soap/server		route	should
map	to	the		SoapController::serverAction()		method	and	the		soap/wsdl		route	should	map	to
the		SoapController::wsdlAction()		method.

Inject	your	dependencies!

You'll	note	that	the	above	example	accepts	the		Acme\Model\Env		instance	via	its
constructor,	allowing	us	to	inject	a	fully-configured	instance	into	the	server	and/or
WSDL	autodiscovery.	This	means	that	you	will	need	to	provide	a	factory	for	your
controller,	to	ensure	that	it	is	injected	with	a	fully	configured	instance	—	and	that	likely
also	means	a	factory	for	the	model,	too.

To	simplify	this,	you	may	want	to	check	out	the	ConfigAbstractFactory 	or
ReflectionBasedAbstractFactory ,	both	of	which	were	introduced	in	version	3.2.0	of
zend-servicemanager.

Using	zend-soap	within	PSR-7	middleware
Using	zend-soap	in	PSR-7	middleware	is	essentially	the	same	as	what	we	detail	for	zend-
mvc:	you'll	need	to	pull	the	request	content	for	the	server,	and	use	the	SOAP	response
returned	to	populate	a	PSR-7	response	instance.

The	example	below	assumes	the	following:

You	are	using	the	UrlHelper	and	ServerUrlHelper	from	zend-expressive-helpers 	to
generate	URIs.
You	are	routing	to	each	middleware	such	that:

The	'soap.server'	route	will	map	to	the		SoapServerMiddleware	,	and	only	allow	POST
requests.
The	'soap.wsdl'	route	will	map	to	the		WsdlMiddleware	,	and	only	allow	GET
requests.

namespace	Acme\Middleware;

use	Acme\Model;

5
6

7

Implement	a	SOAP	server	with	zend-soap

114

use	Psr\Http\Message\ResponseInterface;

use	Psr\Http\Message\ServerRequestInterface;

use	Zend\Diactoros\Response\TextResponse;

use	Zend\Soap\AutoDiscover	as	WsdlAutoDiscover;

use	Zend\Soap\Server	as	SoapServer;

trait	Common

{

				private	$env;

				private	$urlHelper;

				private	$serverUrlHelper;

				public	function	__construct(

								Model\Env	$env,

								UrlHelper	$urlHelper,

								ServerUrlHelper	$serverUrlHelper

)	{

								$this->env	=	$env;

								$this->urlHelper	=	$urlHelper;

								$this->serverUrlHelper	=	$serverUrlHelper;

				}

				private	function	populateServer($server)

				{

								//	Expose	a	class	and	its	methods:

								$server->setClass(Model\Calculator::class);

								//	Expose	an	object	instance	and	its	methods:

								$server->setObject($this->env);

								//	Expose	a	function:

								$server->addFunction('Acme\Model\ping');

				}

}

class	SoapServerMiddleware

{

				use	Common;

				public	function	__invoke(

								ServerRequestInterface	$request,

								ResponseInterface	$response,

								callable	$next

)	{

								$server	=	new	SoapServer($this->generateUri('soap.wsdl'),	[

												'actor'	=>	$this->generateUri('soap.server')

]);

								$server->setReturnResponse(true);

								$this->populateServer($server);

								$xml	=	$server->handle((string)	$request->getBody());

Implement	a	SOAP	server	with	zend-soap

115

								return	new	TextResponse($xml,	200,	[

												'Content-Type'	=>	'application/soap+xml',

]);

				}

				private	function	generateUri($route)

				{

								return	($this->serverUrlHelper)(

												($this->urlHelper)($route)

);

				}

}

class	WsdlMiddleware

{

				use	Common;

				public	function	__invoke(

								ServerRequestInterface	$request,

								ResponseInterface	$response,

								callable	$next

)	{

								$server	=	new	WsdlAutoDiscover();

								$this->populateServer($server);

								return	new	TextResponse($server->toXml(),	200,	[

												'Content-Type'	=>	'application/wsdl+xml',

]);

				}

}

Since	each	middleware	has	the	same	basic	construction,	I've	created	a	trait	with	the
common	functionality,	and	composed	it	into	each	middleware.	As	you	will	note,	the	actual
work	of	each	middleware	is	relatively	simple;	create	a	server,	and	marshal	a	resposne	to
return.

In	the	above	example,	I	use	the	zend-diactoros -specific		TextResponse		type	to	generate	the
response;	this	could	be	any	other	response	type,	as	long	as	the		Content-Type		header	is	set
correctly,	and	the	status	code	is	set	to	200.

Per	the	note	above,	you	will	need	to	configure	your	dependency	injection	container	to	inject
the	middleware	instances	with	the	model	and	helpers.

Summary

8

Implement	a	SOAP	server	with	zend-soap

116

While	SOAP	is	often	maligned	in	PHP	circles,	it	is	still	in	wide	use	within	enterprises,	and
used	in	many	cases	to	provide	cross-platform	web	services	with	predictable	behaviors.	It
can	be	quite	complex,	but	zend-soap	helps	smooth	out	the	bulk	of	the	complexity.	You	can
use	it	standalone,	within	a	Zend	Framework	MVC	application,	or	within	any	application
framework	you	might	be	using.

Visit	the	zend-soap	documentation 	to	find	out	what	else	you	might	be	able	to	do	with	this
component.

Footnotes

.	https://docs.zendframework.com/zend-soap/	↩

.	https://en.wikipedia.org/wiki/SOAP	↩

.	https://apigility.org	↩

.	http://php.net/soap	↩

.	https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/	↩

.	https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/	↩

.	https://docs.zendframework.com/zend-expressive/features/helpers/url-helper	↩

.	https://docs.zendframework.com/zend-diactoros	↩

.	https://docs.zendframework.com/zend-soap/	↩

9

1

2

3

4

5

6

7

8

9

Implement	a	SOAP	server	with	zend-soap

117

https://docs.zendframework.com/zend-soap/
https://en.wikipedia.org/wiki/SOAP
https://apigility.org
http://php.net/soap
https://docs.zendframework.com/zend-servicemanager/config-abstract-factory/
https://docs.zendframework.com/zend-servicemanager/reflection-abstract-factory/
https://docs.zendframework.com/zend-expressive/features/helpers/url-helper
https://docs.zendframework.com/zend-diactoros
https://docs.zendframework.com/zend-soap/

Context-specific	escaping	with	zend-
escaper
by	Matthew	Weier	O'Phinney

Security	of	your	website	is	not	just	about	mitigating	and	preventing	things	like	SQL	injection;
it's	also	about	protecting	your	users	as	they	browse	the	site	from	things	like	cross-site
scripting	(XSS)	attacks,	cross-site	request	forgery	(CSRF),	and	more.	In	particular,	you	need
to	be	very	careful	about	how	you	generate	HTML,	CSS,	and	JavaScript	to	ensure	that	you
do	not	create	such	vectors.

As	the	mantra	goes,	filter	input,	and	escape	output.

Believe	it	or	not,	escaping	in	PHP	is	not	terribly	easy	to	get	right.	For	example,	to	properly
escape	HTML,	you	need	to	use		htmlspecialchars()	,	with	the	flags		ENT_QUOTES	|
ENT_SUBSTITUTE	,	and	provide	a	character	encoding.	Who	really	wants	to	write

htmlspecialchars($string,	ENT_QUOTES	|	ENT_SUBSTITUTE,	'utf-8')

every	single	time	they	need	to	escape	a	string	for	use	in	HTML?

Escaping	HTML	attributes,	CSS,	and	JavaScript	each	require	a	regular	expression	to
identify	known	problem	strings,	and	a	number	of	heuristics	to	replace	unicode	characters
with	hex	entities,	each	with	different	rules.	While	much	of	this	can	be	done	with	built-in	PHP
features,	these	features	do	not	catch	all	potential	attack	vectors.	A	comprehensive	solution	is
required.

Zend	Framework	provides	the	zend-escaper 	component	to	manage	this	complexity	for	you,
exposing	functionality	for	escaping	HTML,	HTML	attributes,	JavaScript,	CSS,	and	URLs	to
ensure	they	are	safe	for	the	browser.

Installation
zend-escaper	only	requires	PHP	(of	at	least	version	5.5	at	the	time	of	writing),	and	is
installable	via	composer:

$	composer	require	zendframework/zend-escaper

1

Context-specific	escaping	with	zend-escaper

118

https://mwop.net/

Usage
While	we	considered	making	zend-escaper	act	as	either	functions	or	static	methods,	there
was	one	thing	in	the	way:	proper	escaping	requires	knowledge	of	the	intended	output
character	set.	As	such,		Zend\Escaper\Escaper		must	first	be	instantiated	with	the	output
character	set;	once	it	has,	you	call	methods	on	it.

use	Zend\Escaper\Escaper;

$escaper	=	new	Escaper('iso-8859-1');

By	default,	if	no	character	set	is	provided,	it	assumes		utf-8	;	we	recommend	using	UTF-8
unless	there	is	a	compelling	reason	not	to.	As	such,	in	most	cases,	you	can	instantiate	it	with
no	arguments:

use	Zend\Escaper\Escaper;

$escaper	=	new	Escaper();

The	class	provides	five	methods:

	escapeHtml(string	$html)	:	string		will	escape	the	string	so	it	may	be	safely	used	as
HTML.	In	general,	this	means		<	,		>	,	and		&		characters	(as	well	as	others)	are
escaped	to	prevent	injection	of	unwanted	tags	and	entities.
	escapeHtmlAttr(string	$value)	:	string		escapes	a	string	so	it	may	safely	be	used
within	an	HTML	attribute	value.
	escapeJs(string	$js)	:	string		escapes	a	string	so	it	may	safely	be	used	within	a
	<script>		tag.	In	particular,	this	ensures	that	the	code	injected	cannot	contain
continuations	and	escape	sequences	that	lead	to	XSS	vectors.
	escapeCss(string	$css)	:	string		escapes	a	string	to	use	as	CSS	within		<style>		tags;
similar	to	JS,	it	prevents	continuations	and	escape	sequences	that	can	lead	to	XSS
vectors.
	escapeUrl(string	$urlPart)	:	string		escapes	a	string	to	use	within	a	URL;	it	should
not	be	used	to	escape	the	entire	URL	itself.	It	should	be	used	to	escape	things	such	as
the	URL	path,	query	string	parameters,	and	fragment,	however.

So,	as	examples:

Context-specific	escaping	with	zend-escaper

119

echo	$escaper->escapeHtml('<script>alert("zf")</script>');

//	results	in	"<script>alert("zf")</script>"

echo	$escaper->escapeHtmlAttr("<script>alert('zf')</script>");

//	results	in	"<script>alert('zf')</script>"

echo	$escaper->escapeJs("bar";	alert("zf");	var	xss="true");

//	results	in	"bar\x26quot\x3B\x3B\x20alert\x28\x26quot\x3Bzf\x26quot\x3B\x29\x3B\x20v

ar\x20xss\x3D\x26quot\x3Btrue"

echo	$escaper->escapeCss("background-image:	url('/zf.png?</style><script>alert(\'zf\')

</script>');");

//	results	in	"background\2D	image\3A	\20	url\28	\27	\2F	zf\2E	png\3F	\3C	\2F	style\3E

	\3C	script\3E	alert\28	\5C	\27	zf\5C	\27	\29	\3C	\2F	script\3E	\27	\29	\3B"

echo	$escaper->escapeUrl('/foo	"	onmouseover="alert(\'zf\')');

//	results	in	"%2Ffoo%20%22%20onmouseover%3D%22alert%28%27zf%27%29"

As	you	can	see	from	these	examples,	the	component	aggresively	filters	each	string	to
ensure	it	is	escaped	correctly	for	the	context	for	which	it	is	intended.

How	and	where	might	you	use	this?

Within	templates,	to	ensure	output	is	properly	escaped.	For	example,	zend-view
includes	helpers	for	it;	it	would	be	easy	to	add	such	functionality	to	Plates 	and	other
templating	solutions.
In	email	templates.
In	serializers	for	APIs,	to	ensure	things	like	URLs	or	XML	attribute	data	are	properly
escaped.
In	error	handlers,	to	ensure	error	messages	are	escaped	and	do	not	contain	XSS
vectors.

The	main	point	is	that	escaping	can	be	easy	with	zend-escaper;	start	securing	your	output
today!

Footnotes

.	https://docs.zendframework.com/zend-escaper	↩

.	https://docs.zendframework.com/zend-view	↩

.	http://platesphp.com	↩

2
3

1

2

3

Context-specific	escaping	with	zend-escaper

120

https://docs.zendframework.com/zend-escaper
https://docs.zendframework.com/zend-view
http://platesphp.com

Filter	input	using	zend-filter
by	Matthew	Weier	O'Phinney

When	securing	your	website,	the	mantra	is	"Filter	input,	escape	output."	We	covered
escaping	output	in	the	Context-specific	escaping	with	zend-escaper	article.	We're	now	going
to	turn	to	filtering	input.

Filtering	input	is	rather	complex,	and	spans	a	number	of	practices:

Filtering/normalizing	input.	As	an	example,	your	web	page	may	have	a	form	that	allows
submitting	a	credit	card	number.	These	have	a	variety	of	formats	that	may	include
spaces	or	dashes	or	dots	—	but	the	only	characters	that	are	of	importance	are	the
digits.	As	such,	you	will	want	to	normalize	such	input	to	strip	out	the	unwanted
characters.
Validating	input.	Once	you	have	done	such	normalization,	you	can	then	check	to	see
that	the	data	is	actually	valid	for	its	context.	This	may	include	one	or	more	rules.	Using
our	credit	card	example,	you	might	first	check	it	is	of	an	appropriate	length,	and	then
verify	that	it	begins	with	a	known	vendor	digit,	and	only	after	those	pass,	validate	the
number	against	a	online	service.

For	now,	we're	going	to	look	at	the	first	item,	filtering	and	normalizing	input,	using	the
component	zend-filter .

Installation
To	install	zend-filter,	use	Composer:

$	composer	require	zendframework/zend-filter

Currently,	the	only	required	dependency	is	zend-stdlib.	However,	a	few	other	components
are	suggested,	based	on	which	filters	and/or	featurse	you	may	want	to	use:

zendframework/zend-servicemanager	is	used	by	the		FilterChain		component	for
looking	up	filters	by	their	short	name	(versus	fully	qualified	class	name).
zendframework/zend-crypt	is	used	by	the	encryption	and	decryption	filters.
zendframework/zend-uri	is	used	by	the		UriNormalize		filter.
zendframework/zend-i18n	is	used	by	several	filters	that	provide	internationalization
features.

1

Filter	input	using	zend-filter

121

https://mwop.net/

For	our	examples,	we'll	be	using	the		FilterChain		functionality,	so	we	will	also	want	to	install
zend-servicemanager:

$	composer	require	zendframework/zend-servicemanager

FilterInterface
Filters	can	be	one	of	two	things:	a	callable	that	accepts	a	single	argument	(the	value	to
filter),	or	an	instance	of		Zend\Filter\FilterInterface	:

namespace	Zend\Filter;

interface	FilterInterface

{

				public	function	filter($value);

}

The	value	can	be	literally	anything,	and	the	filter	can	return	anything	itself.	Generally
speaking,	if	a	filter	cannot	operate	on	the	value,	it	is	expected	to	return	it	verbatim.

zend-filter	provides	a	few	dozen	filters	for	common	operations,	including	things	like:

Normalizing	strings,	integers,	etc.	to	their	corresponding	boolean	values.
Normalizing	strings	representing	integers	to	integer	values.
Normalizing	empty	values	to	null	values.
Normalizing	input	sets	representing	date	and/or	time	selections	from	forms	to		DateTime	
instances.
Normalizing	URI	values.
Comparing	values	to	whitelists	and	blacklists.
Trimming	whitespace,	stripping	newlines,	and	removing	HTML	tags	or	entities.
Upper	and	lower	casing	words.
Stripping	everything	but	digits.
Performing	PCRE	regexp	replacements.
Word	inflection	(camel-case	to	underscores	and	vice	versa,	etc.).
Decrypting	and	encrypting	file	contents,	as	well	as	casting	file	contents	to	lower	or
upper	case.
Compressing	and	decompressing	values.
Decrypting	and	encrypting	values.

Any	of	these	may	be	used	by	themselves.	However,	in	most	cases,	if	that's	all	you're	doing,
you	might	as	well	just	do	the	functionality	inline.	So,	what's	the	benefit	of	zend-filter?

Filter	input	using	zend-filter

122

Chaining	filters!

FilterChain
When	we	get	input	from	the	web,	it	generally	comes	as	strings,	and	is	the	result	of	user
input.	As	such,	we	often	get	a	lot	of	garbage:	extra	spaces,	unnecessary	newlines,	HTML
characters,	etc.

When	filtering	such	input,	we	might	want	to	perform	several	operations:

$value	=	$request->getParsedBody()['phone']	??	'';

$value	=	trim($value);

$value	=	preg_replace("/[^\n\r]/",	'',	$value);

$value	=	preg_replace('/[^\d]/',	'',	$value);

We	then	need	to	test	our	code	to	ensure	that	we're	filtering	correctly.	Additionally,	if	at	any
point	we	fail	to	re-assign,	we	may	lose	the	changes	we	were	performing!

With	zend-filter,	we	can	instead	use	a		FilterChain	.	The	above	example	becomes:

use	Zend\Filter\FilterChain;

$filter	=	new	FilterChain();

//	attachByName	uses	the	class	name,	minus	the	namespace,	and

$filter->attachByName('StringTrim');

$filter->attachByName('StripNewlines');

$filter->attachByName('Digits');

$value	=	$filter->filter($request->getParsedBody()['phone']	??	'');

Here's	another	example:	let's	say	we	have	configuration	keys	that	are	in		snake_case_format	,
and	which	may	be	read	from	a	file,	and	we	wish	to	convert	those	values	to		CamelCase	.

use	Zend\Filter;

$filter	=	new	Filter\FilterChain();

//	attach	lets	you	provide	the	instance	you	wish	to	use;	this	will	work

//	even	without	zend-servicemanager	installed.

$filter->attach(new	Filter\StringTrim());

$filter->attach(new	Filter\StripNewlines());	//	because	we	may	have	\r	characters

$filter->attach(new	Filter\Word\UnderscoreToCamelCase());

$configKeys	=	array_map([$filter,	'filter'],	explode("\n",	$fileContents));

Filter	input	using	zend-filter

123

This	new	example	demonstrates	a	key	feature	of	a		FilterChain	:	you	can	re-use	it!	Instead
of	having	to	put	the	code	for	normalizing	the	values	within	an		array_map		callback,	we	can
instead	directly	use	our	already	configured		FilterChain	,	invoking	it	once	for	each	value!

Wrapping	up
zend-filter	can	be	a	powerful	tool	in	your	arsenal	for	dealing	with	user	input.	Paired	with	good
validation,	you	can	protect	your	application	from	malicious	or	malformed	input.

Footnotes

.	https://docs.zendframework.com/zend-filter/	↩1

Filter	input	using	zend-filter

124

https://docs.zendframework.com/zend-filter/

Validate	input	using	zend-validator
by	Matthew	Weier	O'Phinney

In	our	article	Filter	input	using	zend-filter,	we	covered	filtering	data.	The	filters	in	zend-filter
are	generally	used	to	pre-filter	or	normalize	incoming	data.	This	is	all	well	and	good,	but	we
still	don't	know	if	the	data	is	valid.	That's	where	zend-validator	comes	in.

Installation
To	install	zend-validator,	use	Composer:

$	composer	require	zendframework/zend-validator

Like	zend-filter,	the	only	required	dependency	is	zend-stdlib.	However,	a	few	other
components	are	suggested,	based	on	which	filters	and/or	features	you	may	want	to	use:

zendframework/zend-servicemanager	is	used	by	the		ValidatorPluginManager		and
	ValidatorChain		to	look	up	validators	by	their	short	name	(versus	fully	qualified	class
name),	as	well	as	to	allow	usage	of	validators	with	dependencies.
zendframework/zend-db	is	used	by	a	pair	of	validators	that	can	check	if	a	matching
record	exists	(or	does	not!).
zendframework/zend-uri	is	used	by	the		Uri		validator.
The	CSRF	validator	requires	both	zendframework/zend-math	and	zendframework/zend-
session.
zendframework/zend-i18n	and	zendframework/zend-i18n-resources	can	be	installed	in
order	to	provide	translation	of	validation	error	messages.

For	our	examples,	we'll	be	using	the		ValidatorChain		functionality	with	a
	ValidatorPluginManager	,	so	we	will	also	want	to	install	zend-servicemanager:

$	composer	require	zendframework/zend-servicemanager

ValidatorInterface
The	current	incarnation	of	zend-validator	is	stateful;	validation	error	messages	are	stored	in
the	validator	itself.	As	such,	validators	must	implement	the		ValidatorInterface	:

Validate	input	using	zend-validator

125

https://mwop.net/

namespace	Zend\Validator;

interface	ValidatorInterface

{

				/**

					*	@param	mixed	$value

					*	@return	bool

					*/

				public	function	isValid($value);

				/**

					*	@return	array

					*/

				public	function	getMessages();

}

The		$value		can	be	literally	anything;	a	validator	examines	it	to	see	if	it	is	valid,	and	returns
a	boolean	result.	If	it	is	invalid,	a	subsequent	call	to		getMessages()		should	return	an
associative	array	with	the	keys	being	message	identifiers,	and	the	values	the	human-
readable	message	strings.

As	such,	usage	looks	like	the	following:

if	(!	$validator->isValid($value))	{

				//	Invalid	value

				echo	"Failed	validation:\n";

				foreach	($validator->getMessages()	as	$message)	{

								printf("-	%s\n",	$message);

				}

				return	false;

}

//	Valid	value!

return	true;

Stateless	validations	are	planned

At	the	time	of	writing,	we	have	proposed 	a	new	validation	component	to	work	in
parallel	with	zend-validator;	this	new	component	will	implement	a	stateless	architecture.
Its	proposed	validation	interface	will	no	longer	return	a	boolean,	but	rather	a
	ValidationResult	.	That	instance	will	provide	a	method	for	determining	if	the	validation
was	successful,	encapsulate	the	value	that	was	validated,	and,	for	invalid	values,
provide	access	to	the	validation	error	messages.	Doing	so	will	allow	better	re-use	of
validators	within	the	same	execution	process.

This	proposal	also	includes	code	for	adapting	existing	zend-validator	implementations
to	work	with	the	stateless	design.

1

Validate	input	using	zend-validator

126

zend-validator	provides	a	few	dozen	filters	for	common	operations,	including	things	like:

Common	conditionals	like		LessThan	,		GreaterThan	,		Identical	,		NotEmpty	,
	IsInstanceOf	,		InArray	,	and		Between	.
String	values,	such	as		StringLength	,		Regex	.
Network-related	values	such	as		Hostname	,		Ip	,		Uri	,	and		EmailAddress	.
Business	values	such	as		Barcode	,		CreditCard	,		GpsPoint	,		Iban	,	and		Uuid	.
Date	and	time	related	values	such	as		Date	,		DateStep	,	and		Timezone	.

Any	of	these	validators	may	be	used	by	themselves.

In	many	cases,	though,	your	validation	may	be	related	to	a	set	of	validations:	as	an	example,
the	value	must	be	non-empty,	a	certain	number	of	characters,	and	fulfill	a	regular
expression.	Like	filters,	zend-validator	allows	you	to	do	this	with	chains.

ValidatorChain
Usage	of	a	validator	chain	is	similar	to	filter	chains:	attach	validators	you	want	to	execute,
and	then	pass	the	value	to	the	chain:

use	Zend\Validator;

$validator	=	new	Validator\ValidatorChain();

$validator->attach(new	Validator\NotEmpty());

$validator->attach(new	Validator\StringLength(['min'	=>	6]));

$validator->attach(new	Validator\Regex('/^[a-f0-9]{6,12}$/');

if	(!	$validator->isValid($value))	{

				//	Failed	validation

				var_dump($validator->getMessages());

}

The	above	uses	validator	instances,	eliminating	the	need	for		ValidatorPluginManager	,	and
thus	avoids	usage	of	zend-servicemanager.	However,	if	we	have	zend-servicemanager
installed,	we	can	replace	usage	of		attach()		with		attachByName()	:

Validate	input	using	zend-validator

127

use	Zend\Validator;

$validator	=	new	Validator\ValidatorChain();

$validator->attachByName('NotEmpty');

$validator->attachByName('StringLength',	['min'	=>	6]);

$validator->attachByName('Regex',	['pattern'	=>	'/^[a-f0-9]{6,12}$/']);

if	(!	$validator->isValid($value))	{

				//	Failed	validation

				var_dump($validator->getMessages());

}

Breaking	the	chain
If	you	were	to	run	either	of	these	examples	with		$value	=	''	,	you	may	discover	something
unexpected:	you'll	get	validation	error	messages	for	every	single	validator!	This	seems
wasteful;	there's	no	need	to	run	the		StringLength		or		Regex		validators	if	the	value	is	empty,
is	there?

To	solve	this	problem,	when	attaching	a	validator,	we	can	tell	the	chain	to	break	execution	if
the	given	validator	fails.	This	is	done	by	passing	a	boolean	flag:

as	the	second	argument	to		attach()	
as	the	third	argument	to		attachByName()		(the	second	argument	is	an	array	of
constructor	options)

Let's	update	the	second	example:

use	Zend\Validator;

$validator	=	new	Validator\ValidatorChain();

$validator->attachByName('NotEmpty',	[],	$breakChainOnFailure	=	true);

$validator->attachByName('StringLength',	['min'	=>	6],	true);

$validator->attachByName('Regex',	['pattern'	=>	'/^[a-f0-9]{6,12}$/']);

if	(!	$validator->isValid($value))	{

				//	Failed	validation

				var_dump($validator->getMessages());

}

The	above	adds	a	boolean		true		as	the		$breakChainOnFailure		argument	to	the
	attachByName()		method	calls	of	the		NotEmpty		and		StringLength		validators	(we	had	to
provide	an	empty	array	of	options	for	the		NotEmpty		validator	so	we	could	pass	the	flag).	In
these	cases,	if	the	value	fails	validation,	no	further	validators	will	be	executed.

Validate	input	using	zend-validator

128

Thus:

	$value	=	''		will	result	in	a	single	validation	failure	message,	produced	by	the
	NotEmpty		validator.
	$value	=	'test'		will	result	in	a	single	validation	failure	message,	produced	by	the
	StringLength		validator.
	$value	=	'testthis'		will	result	in	a	single	validation	failure	message,	produced	by	the
	Regex		validator.

Prioritization
Validators	are	executed	in	the	same	order	in	which	they	are	attached	to	the	chain	by	default.
However,	internally,	they	are	stored	in	a		PriorityQueue	;	this	allows	you	to	provide	a	specific
order	in	which	to	execute	the	validators.	Higher	values	execute	earlier,	while	lower	values
(including	negative	values)	execute	last.	The	default	priority	is	1.

Priority	values	may	be	passed	as	the	third	argument	to		attach()		and	fourth	argument	to
	attachByName()	.

As	an	example:

$validator	=	new	Validator\ValidatorChain();

$validator->attachByName('StringLength',	['min'	=>	6],	true,	1);

$validator->attachByName('Regex',	['pattern'	=>	'/^[a-f0-9]{6,12}$/'],	false,	-100);

$validator->attachByName('NotEmpty',	[],	true,	100);

In	the	above,	when	executing	the	validation	chain,	the	order	will	still	be		NotEmpty	,	followed
by		StringLength	,	followed	by		Regex	.

Why	prioritize?

Why	would	you	use	this	feature?	The	main	reason	is	if	you	want	to	define	validation
chains	via	configuration,	and	cannot	guarantee	the	order	in	which	the	items	will	be
present	in	configuration.	By	adding	a	priority	value,	you	can	ensure	that	recreation	of
the	validation	chain	will	preserve	the	expected	order.

Context
Sometimes	we	may	want	to	vary	how	we	validate	a	value	based	on	whether	or	not	another
piece	of	data	is	present,	or	based	on	that	other	piece	of	data's	value.	zend-validator	offers
an	unofficial	API	for	that,	via	an	optional		$context		value	you	can	pass	to		isValid()	.	The

Validate	input	using	zend-validator

129

	ValidatorChain		accepts	this	value,	and,	if	present,	will	pass	it	to	each	validator	it	composes.

As	an	example,	let's	say	you	want	to	capture	an	email	address	(form	field	"contact"),	but
only	if	the	user	has	selected	a	radio	button	allowing	you	to	do	so	(form	field	"allow_contact").
We	might	write	that	validator	as	follows:

use	ArrayAccess;

use	ArrayObject;

use	Zend\Validator\EmailAddress;

use	Zend\Validator\ValidatorInterface;

class	ContactEmailValidator	implements	ValidatorInterface

{

				const	ERROR_INVALID_EMAIL	=	'contact-email-invalid';

				/**	@var	string	*/

				private	$contextVariable;

				/**	@var	EmailAddress	*/

				private	$emailValidator;

				/**	@var	string[]	*/

				private	$messages	=	[];

				/**	@var	string[]	*/

				private	$messageTemplates	=	[

								self::ERROR_INVALID_EMAIL	=>	'Email	address	"%s"	is	invalid',

];

				public	function	__construct(

								EmailAddress	$emailValidator	=	null,

								string	$contextVariable	=	'allow_contact'

)	{

								$this->emailValidator	=	$emailValidator	?:	new	EmailAddress();

								$this->contextVariable	=	$contextVariable;

				}

				public	function	isValid($value,	$context	=	null)

				{

								$this->messages	=	[];

								if	(!	$this->allowsContact($context))	{

												//	Value	will	be	discarded,	so	always	valid.

												return	true;

								}

								if	($this->emailValidator->isValid($value))	{

												return	true;

								}

								$this->messages[self::ERROR_INVALID_EMAIL]	=	sprintf(

												$this->messageTemplates[self::ERROR_INVALID_EMAIL],

Validate	input	using	zend-validator

130

												var_export($value,	true)

);

								return	false;

				}

				public	function	getMessages()

				{

								return	$this->messages;

				}

				private	function	allowsContact($context)	:	bool

				{

								if	(!	$context	||

												!	(is_array($context)

														||	$context	instanceof	ArrayObject

														||	$context	instanceof	ArrayAccess)

)	{

												return	false;

								}

								$allowsContact	=	$context[$this->contextVariable]	??	false;

								return	(bool)	$allowsContact;

				}

}

We	would	then	add	it	to	the	validator	chain,	and	call	it	like	so:

$validator->attach(new	ContactEmailValidator());

if	(!	$validator->isValid($data['contact'],	$data))	{

				//	Failed	validation!

}

This	approach	can	allow	for	some	quite	complex	validation	routines,	particularly	if	you	nest
validation	chains	within	custom	validators!

Registering	your	own	validators.
If	you	write	your	own	validators,	chances	are	you'll	want	to	use	them	with	the
	ValidatorChain	.	This	class	composes	a		ValidatorPluginManager	,	which	is	a	plugin
manager	built	on	top	of	zend-servicemanager.	As	such,	you	can	register	your	validators	with
it:

Validate	input	using	zend-validator

131

$plugins	=	$validator->getPluginManager();

$plugins->setFactory(ContactEmailValidator::class,	ContactEmailValidatorFactory::class

);

$plugins->setService(ContactEmailValidator::class,	$contactEmailValidator);

Alternately,	if	using	zend-mvc	or	Expressive,	you	can	provide	configuration	via	the
	validators		configuration	key:

return	[

				'validators'	=>	[

								'factories'	=>	[

												ContactEmailValidator::class	=>	ContactEmailValidatorFactory::class,

],

],

];

If	you	want	to	use	a	"short	name"	to	identify	your	validator,	we	recommend	using	an	alias,
aliasing	the	short	name	to	the	fully	qualified	class	name.

Wrapping	up
Between	using	zend-filter	to	normalize	and	pre-filter	values,	and	zend-validator	to	validate
the	values,	you	can	start	locking	down	the	input	your	users	submit	to	your	application.

That	said,	what	we've	demonstrated	so	far	is	how	to	work	with	single	values.	Most	forms
submit	sets	of	values;	using	the	approaches	so	far	can	lead	to	a	lot	of	code!

We	have	a	solution	for	this	as	well,	via	our	zend-inputfilter	component.	Read	the	article
Validate	data	using	zend-inputfilter	for	more	information.

Footnotes

.	https://discourse.zendframework.com/t/rfc-new-validation-component/208/	↩1

Validate	input	using	zend-validator

132

https://discourse.zendframework.com/t/rfc-new-validation-component/208/

Validate	data	using	zend-inputfilter
by	Matthew	Weier	O'Phinney

In	our	articles	Filter	input	using	zend-filter	and	Validate	input	using	zend-validator,	we
covered	the	usage	of	zend-filter	and	zend-validator.	With	these	two	components,	you	now
have	the	tools	necessary	to	ensure	any	given	user	input	is	valid,	fulfilling	the	first	half	of	the
"filter	input,	escape	output"	mantra.

However,	as	we	discussed	in	the	zend-validator	article,	as	powerful	as	validation	chains	are,
they	only	allow	you	to	validate	a	single	value	at	a	time.	How	do	you	go	about	validating	sets
of	values	—	such	as	data	submitted	from	a	form,	or	a	resource	for	an	API?

To	solve	that	problem,	Zend	Framework	provides	zend-inputfilter .	An	input	filter	aggregates
one	or	more	inputs,	any	one	of	which	may	also	be	another	input	filter,	allowing	you	to
validate	complex,	multi-set,	and	nested	set	values.

Installation
To	install	zend-inputfilter,	use	Composer:

$	composer	require	zendframework/zend-inputfilter

zend-inputfilter	only	directly	requires	zend-filter,	zend-stdlib,	and	zend-validator.	To	use	its
powerful	factory	feature,	however,	you'll	also	need	zend-servicemanager,	as	it	greatly
simplifies	creation	of	input	filters:

$	composer	require	zendframework/zend-servicemanager

Theory	of	operation
An	input	filter	composes	one	or	more	inputs,	any	of	which	may	also	be	an	input	filter	(and
thus	represent	a	set	of	data	values).

Any	given	input	is	considered	required	by	default,	but	can	be	configured	to	be	optional.
When	required,	an	input	will	be	considered	invalid	if	the	value	is	not	present	in	the	data	set,
or	is	empty.	When	optional,	if	the	value	is	not	present,	or	is	empty,	it	is	considered	valid.	An

1

Validate	data	using	zend-inputfilter

133

https://mwop.net/

additional	flag,		allow_empty	,	can	be	used	to	allow	empty	values	for	required	elements;	still
another	flag,		continue_if_empty	,	will	force	validation	to	occur	for	either	required	or	optional
values	if	the	value	is	present	but	empty.

When	validating	a	value,	two	steps	occur:

The	value	is	passed	to	a	filter	chain	in	order	to	normalize	the	value.	Typical
normalizations	include	stripping	non-digit	characters	for	phone	numbers	and	credit	card
numbers;	trimming	whitespace;	etc.
The	value	is	then	passed	to	a	validator	chain	to	determine	if	the	normalized	value	is
valid.

An	input	filter	aggregates	the	inputs,	as	well	as	the	values	themselves.	You	pass	the	user
input	to	the	input	filter	after	it	has	been	configured,	and	then	check	to	see	if	it	is	valid.	If	it	is,
you	can	pull	the	normalized	values	from	it	(as	well	as	the	raw	values,	if	desired).	If	any	value
is	invalid,	you	would	then	pull	the	validation	error	messages	from	it.

Stateless	operation

The	current	approach	is	stateful:	values	are	passed	to	the	input	filter	before	you
execute	its		isValid()		method,	and	then	the	values	and	any	validation	error	messages
are	stored	within	the	input	filter	instance	for	later	retrieval.	This	can	cause	issues	if	you
wish	to	use	the	same	input	filter	multiple	times	in	the	same	request.

For	this	reason,	we	are	planning	a	new,	parallel	component	that	provides	stateless
validation:	calling		isValid()		will	require	passing	the	value(s)	to	validate,	and	both
inputs	and	input	filters	alike	will	return	a	result	object	from	this	method	with	the	raw	and
normalized	values,	the	result	of	validation,	and	any	validation	error	messages.

Getting	started
Let's	consider	a	registration	form	where	we	want	to	capture	a	user	email	and	their	password.
In	our	first	example,	we	will	use	explicit	usage,	which	does	not	require	the	use	of	plugin
managers.

Validate	data	using	zend-inputfilter

134

use	Zend\Filter;

use	Zend\InputFilter\Input;

use	Zend\InputFilter\InputFilter;

use	Zend\Validator;

$email	=	new	Input('email');

$email->getFilterChain()

								->attach(new	Filter\StringTrim());

$email->getValidatorChain()

								->attach(new	Validator\EmailAddress());

$password	=	new	Input('password');

$password->getValidatorChain()

								->attach(new	Validator\StringLength(8),	true)

						->attach(new	Validator\Regex('/[a-z]/'))

						->attach(new	Validator\Regex('/[A-Z]/'))

						->attach(new	Validator\Regex('/[0-9]/'))

						->attach(new	Validator\Regex('/[.!@#$%^&*;:]/'));

$inputFilter	=	new	InputFilter();

$inputFilter->add($email);

$inputFilter->add($password);

$inputFilter->setData($_POST);

if	($inputFilter->isValid())	{

				echo	"The	form	is	valid\n";

				$values	=	$inputFilter->getValues();

}	else	{

				echo	"The	form	is	not	valid\n";

				foreach	($inputFilter->getInvalidInput()	as	$error)	{

								var_dump($error->getMessages());

				}

}

The	above	creates	two	inputs,	one	each	for	the	incoming	email	address	and	password.	The
email	address	will	be	trimmed	of	whitespace,	and	then	validated.	The	password	will	be
validated	only,	checking	that	we	have	a	value	of	at	least	8	characters,	with	at	least	one	each
of	lowercase,	uppercase,	digit,	and	special	characters.	Further,	if	any	given	character	is
missing,	we'll	get	a	validation	error	message	so	that	the	user	knows	how	to	create	their
password.

Each	input	is	added	to	an	input	filter	instance.	We	pass	the	form	data	(via	the		$_POST	
superglobal),	and	then	check	to	see	if	it	is	valid.	If	so,	we	grab	the	values	from	it	(we	can	get
the	original	values	via		getRawValues()).	If	not,	we	grab	error	messages	from	it.

By	default,	all	inputs	are	considered	required.	Let's	say	we	also	wanted	to	collect	the	user's
full	name,	but	make	that	optional.	We	could	create	an	input	like	the	following:

Validate	data	using	zend-inputfilter

135

$name	=	new	Input('user_name');

$name->setRequired(false);	//	OPTIONAL!

$name>getFilterChain()

								->attach(new	Filter\StringTrim());

Input	specifications
As	noted	in	the	"Installation"	section,	we	can	leverage	zend-servicemanager	and	the	various
plugin	managers	composed	in	it	in	order	to	create	our	filters.

	Zend\InputFilter\InputFilter		internally	composes		Zend\InputFilter\Factory	,	which	itself
composes:

	Zend\InputFilter\InputFilterPluginManager	,	a	plugin	manager	for	managing
	Zend\InputFilter\Input		and		Zend\InputFilter\InputFilter		instances.
	Zend\Filter\FilterPluginManager	,	a	plugin	manager	for	filters.
	Zend\Validator\ValidatorPluginManager	,	a	plugin	manager	for	validators.

The	upshot	is	that	we	can	often	use	specifications	instead	of	instances	to	create	our	inputs
and	input	filters.

As	such,	our	above	examples	can	be	written	like	this:

Validate	data	using	zend-inputfilter

136

use	Zend\InputFilter\InputFilter;

$inputFilter	=	new	InputFilter();

$inputFilter->add([

				'name'	=>	'email',

				'filters'	=>	[

								['name'	=>	'StringTrim']

],

				'validators'	=>	[

								['name'	=>	'EmailAddress']

],

]);

$inputFilter->add([

				'name'	=>	'user_name',

				'required'	=>	false,

				'filters'	=>	[

								['name'	=>	'StringTrim']

],

]);

$inputFilter->add([

				'name'	=>	'password',

				'validators'	=>	[

								[

												'name'	=>	'StringLength',

												'options'	=>	['min'	=>	8],

												'break_chain_on_failure'	=>	true,

],

								['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[a-z]/'],

								['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[A-Z]/'],

								['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[0-9]/'],

								['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[.!@#$%^&*;:]/'],

],

]);

There	are	a	number	of	other	fields	you	could	use:

	type		allows	you	to	specify	the	input	or	input	filter	class	to	use	when	creating	the	input.
	error_message		allows	you	to	specify	a	single	error	message	to	return	for	an	input	on
validation	failure.	This	is	often	useful	as	otherwise	you'll	get	an	array	of	messages	for
each	input.
	allow_empty		and		continue_if_empty	,	which	were	discussed	earlier,	and	control	how
validation	occurs	when	empty	values	are	encountered.

Why	would	you	do	this	instead	of	using	the	programmatic	interface,	though?

First,	this	approach	leverages	the	various	plugin	managers,	which	means	that	any	given
input,	input	filter,	filter,	or	validator	will	be	pulled	from	their	respective	plugin	manager.	This
allows	you	to	provide	additional	types	easily,	but,	more	importantly,	override	existing	types.

Validate	data	using	zend-inputfilter

137

Second,	the	configuration-based	approach	allows	you	to	store	the	definitions	in
configuration,	and	potentially	even	override	the	definitions	via	configuration	merging!	Apigility
utilizes	this	feature	heavily,	in	part	to	provide	different	input	filters	based	on	API	version.

Managing	the	plugin	managers

To	ensure	that	you	can	use	already	configured	plugin	managers,	you	can	inject	them	into	the
	Zend\InputFilter\Factory		composed	in	your	input	filter.	As	an	example,	considering	the
following	service	factory	for	an	input	filter:

function	(ContainerInterface	$container)

{

				$filters	=	$container->get('FilterManager');

				$validators	=	$container->get('ValidatorManager');

				$inputFilters	=	$container->get('InputFilterManager');

				$inputFilter	=	new	InputFilter();

				$inputFilterFactory	=	$inputFilter->getFactory();

				$inputFilterFactory->setDefaultFilterChain($filters);

				$inputFilterFactory->setDefaultValidatorChain($validators);

				$inputFilterFactory->setInputFilterManager($inputFilters);

				//	add	inputs	to	the	$inputFilter,	and	finally	return	it...

				return	$inputFilter;

}

Managing	Input	Filters
The		InputFilterPluginManager		allows	you	to	define	input	filters	with	dependencies,	which
gives	you	the	ability	to	create	re-usable,	complex	input	filters.	One	key	aspect	to	using	this
feature	is	that	the		InputFilterPluginManager		also	ensures	the	configured	filter	and	validator
plugin	managers	are	injected	in	the	factory	used	by	the	input	filter,	ensuring	any	overrides	or
custom	filters	and	validators	you've	defined	are	present.

To	make	this	work,	the	base		InputFilter		implementation	also	implements
	Zend\Stdlib\InitializableInterface	,	which	defines	an		init()		method;	the
	InputFilterPluginManager		calls	this	after	instantiating	your	input	filter	and	injecting	it	with	a
factory	composing	all	the	various	plugin	manager	services.

What	this	means	is	that	if	you	use	this	method	to		add()		your	inputs	and	nested	input	filters,
everything	will	be	properly	configured!

Validate	data	using	zend-inputfilter

138

As	an	example,	let's	say	we	have	a	"transaction_id"	field,	and	that	we	need	to	check	if	that
transaction	identifier	exists	in	the	database.	As	such,	we	may	have	a	custom	validator	that
depends	on	a	database	connection	to	do	this.	We	could	write	our	input	filter	as	follows:

namespace	MyBusiness;

use	Zend\InputFilter\InputFilter;

class	OrderInputFilter	extends	InputFilter

{

				public	function	init()

				{

								$this->add([

												'name'	=>	'transaction_id',

												'validators'	=>	[

																['name'	=>	TransactionIdValidator::class],

],

]);

				}

}

We	would	then	register	this	in	our		input_filters		configuration:

//	in	config/autoload/input_filters.global.php

return	[

				'input_filters'	=>	[

								'invokables'	=>	[

												MyBusiness\OrderInputFilter::class	=>	MyBusiness\OrderInputFilter::class,

],

],

				'validators'	=>	[

								'factories'	=>	[

												MyBusiness\TransactionIdValidator::class	=>	MyBusiness\TransactionIdValida

torFactory::class,

],

],

];

This	approach	works	best	with	the	specification	form;	otherwise	you	need	to	pull	the	various
plugin	managers	from	the	composed	factory	and	pass	them	to	the	individual	inputs:

$transId	=	new	Input();

$transId->getValidatorChain()

				->setValidatorManager($this->getFactory()->getValidatorManager());

$transId->getValidatorChain()

				->attach(TransactionIdValidator::class);

Validate	data	using	zend-inputfilter

139

Specification-driven	input	filters
Finally,	we	can	look	at	specification-driven	input	filters.

The	component	provides	an		InputFilterAbstractServiceFactory	.	When	you	request	an	input
filter	or	input	that	is	not	directly	in	the		InputFilterPluginManager	,	this	abstract	factory	will
then	check	to	see	if	a	corresponding	value	is	present	in	the		input_filter_specs	
configuration	array.	If	so,	it	will	pass	that	specification	to	a		Zend\InputFilter\Factory	
configured	with	the	various	plugin	managers	in	order	to	create	the	instance.

Using	our	original	example,	we	could	define	the	registration	form	input	filter	as	follows:

return	[

				'input_filter_specs'	=>	[

								'registration_form'	=>	[

												[

																'name'	=>	'email',

																'filters'	=>	[

																				['name'	=>	'StringTrim']

],

																'validators'	=>	[

																				['name'	=>	'EmailAddress']

],

],

												[

																'name'	=>	'user_name',

																'required'	=>	false,

																'filters'	=>	[

																				['name'	=>	'StringTrim']

],

],

												[

																'name'	=>	'password',

																'validators'	=>	[

																				[

																								'name'	=>	'StringLength',

																								'options'	=>	['min'	=>	8],

																								'break_chain_on_failure'	=>	true,

],

																				['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[a-z]/'],

																				['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[A-Z]/'],

																				['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[0-9]/'],

																				['name'	=>	'Regex',	'options'	=>	['pattern'	=>	'/[.!@#$%^&*;:]/'],

],

],

],

],

];

Validate	data	using	zend-inputfilter

140

We	would	then	retrieve	it	from	the	input	filter	plugin	manager:

$inputFilter	=	$inputFilters->get('registration_form');

Considering	most	input	filters	do	not	need	to	compose	dependencies	other	than	the	inputs
and	input	filters	they	aggregate,	this	approach	makes	for	a	dynamic	way	to	define	input
validation.

Topics	not	covered
zend-inputfilter	has	a	ton	of	other	features	as	well:

Input	and	input	filter	merging.
Handling	of	array	values.
Collections	(repeated	data	sets	of	the	same	structure).
Filtering	of	file	uploads.

On	top	of	all	this,	it	provides	a	number	of	interfaces	against	which	you	can	program	in	order
to	write	completely	custom	functionality!

One	huge	strength	of	zend-inputfilter	is	that	it	can	be	used	for	any	sort	of	data	set	you	need
to	validate:	forms,	obviously,	but	also	API	payloads,	data	retrieved	from	a	message	queue,
and	more.

Footnotes

.	https://docs.zendframework.com/zend-inputfilter	↩1

Validate	data	using	zend-inputfilter

141

https://docs.zendframework.com/zend-inputfilter

End-to-end	encryption	with	Zend
Framework	3
by	Enrico	Zimuel

zend-crypt 	3.1.0	includes	a	hybrid	cryptosystem ,	a	feature	that	can	be	used	to	implement
an	end-to-end	encryption 	schema	in	PHP.

A	hybrid	cryptosystem	is	a	cryptographic	mechanism	that	uses	symmetric	encyption	(e.g.
AES)	to	encrypt	a	message,	and	public-key	cryptography	(e.g.	RSA)	to	protect	the
encryption	key.	This	methodology	guarantee	two	advantages:	the	speed	of	a	symmetric
algorithm	and	the	security	of	public-key	cryptography.

Before	I	present	the	PHP	implementation,	let's	explore	the	hybrid	mechanism	in	more	detail.
Below	is	a	diagram	demonstrating	a	hybrid	encryption	schema:

A	user	(the	sender)	wants	to	send	a	protected	message	to	another	user	(the	receiver).
He/she	generates	a	random	session	key	(one-time	pad)	and	uses	this	key	with	a
symmetric	algorithm	to	encrypt	the	message	(in	the	figure,	Block	cipher	represents	an
authenticated	encryption 	algorithm).	At	the	same	time,	the	sender	encrypts	the	session	key
using	the	public	key	of	the	receiver.	This	operation	is	done	using	a	public-key	algorithm,	e.g.,
RSA.	Once	the	encryption	is	done,	the	sender	can	send	the	encrypted	session	key	along
with	the	encrypted	message	to	the	receiver.	The	receiver	can	decrypt	the	session	key	using
his/her	private	key,	and	consequently	decrypt	the	message.

This	idea	of	combining	together	symmetric	and	asymmetric	(public-key)	encryption	can	be
used	to	implement	end-to-end	encryption	(E2EE).	E2EE	is	a	communication	system	that
encrypts	messages	exchanged	by	two	users	with	the	property	that	only	the	two	users	can
decrypt	the	message.	End-to-end	encryption	has	become	quite	popular	in	the	last	years	in
software,	and	particularly	messaging	systems,	such	as	WhatsApp .	More	generally,	when
you	have	software	used	by	many	users,	end-to-end	encryption	can	be	used	to	protect
information	exchanged	by	users.	Only	the	users	can	access	(decrypt)	exchanged
information;	even	the	administrator	of	the	system	is	not	able	to	access	this	data.

Build	end-to-end	encryption	in	PHP

1 2
3

4 5

6

7

End-to-end	encryption	with	Zend	Framework	3

142

https://www.zimuel.it

We	want	to	implement	end-to-end	encryption	for	a	web	application	with	user	authentication.
We	will	use	zend-crypt	3.1.0	to	implement	our	cryptographic	schemas.	This	component	of
Zend	Framework	uses	PHP's	OpenSSL	extension 	for	its	cryptographic	primitives.

The	first	step	is	to	create	public	and	private	keys	for	each	users.	Typically,	this	step	can	be
done	when	the	user	credentials	are	created.	To	generare	the	pairs	of	keys,	we	can	use
	Zend\Crypt\PublicKey\RsaOptions	.	Below	is	an	example	demonstrating	how	to	generate
public	and	private	keys	to	store	in	the	filesystem:

use	Zend\Crypt\PublicKey\RsaOptions;

use	Zend\Crypt\BlockCipher;

$username	=	'alice';

$password	=	'test';	//	user's	password

//	Generate	public	and	private	key

$rsaOptions	=	new	RsaOptions();

$rsaOptions->generateKeys([

				'private_key_bits'	=>	2048

]);

$publicKey		=	$rsaOptions->getPublicKey()->toString();

$privateKey	=	$rsaOptions->getPrivateKey()->toString();

//	store	the	public	key	in	a	.pub	file

file_put_contents($username	.	'.pub',	$publicKey);

//	encrypt	and	store	the	private	key	in	a	file

$blockCipher	=	BlockCipher::factory('openssl',	array('algo'	=>	'aes'));

$blockCipher->setKey($password);

file_put_contents($username,	$blockCipher->encrypt($privateKey));

In	the	above	example,	we	generated	a	private	key	of	2048	bits.	If	you	are	wondering	why	not
4096	bits,	this	is	questionable	and	depends	on	the	real	use	case.	For	the	majority	of
applications,	2048	is	still	a	good	key	size,	at	least	until	2030.	If	you	want	more	security	and
you	don't	care	about	the	additional	CPU	time,	you	can	increase	the	key	size	to	4096.	I
suggest	reading	the	following	blog	posts	for	more	information	on	key	key	size:

RSA	Key	Sizes:	2048	or	4096	bits?:	https://danielpocock.com/rsa-key-sizes-2048-or-
4096-bits
The	Big	Debate,	2048	vs.	4096,	Yubico’s	Position:	https://www.yubico.com/2015/02/big-
debate-2048-4096-yubicos-stand/
HTTPS	Performance,	2048-bit	vs	4096-bit:	https://blog.nytsoi.net/2015/11/02/nginx-
https-performance

8

End-to-end	encryption	with	Zend	Framework	3

143

https://danielpocock.com/rsa-key-sizes-2048-or-4096-bits
https://danielpocock.com/rsa-key-sizes-2048-or-4096-bits
https://www.yubico.com/2015/02/big-debate-2048-4096-yubicos-stand/
https://www.yubico.com/2015/02/big-debate-2048-4096-yubicos-stand/
https://blog.nytsoi.net/2015/11/02/nginx-https-performance
https://blog.nytsoi.net/2015/11/02/nginx-https-performance

In	the	example	above,	we	did	not	generate	the	private	key	using	a	passphrase;	this	is
because	the	OpenSSL	extension	of	PHP	does	not	support	AEAD	(Authenticated
Encrypt	with	Associated	Data)	mode	for	ciphers	yet,	which	is	required	in	order	to	use
passphrases.

The	default	passphrase	encryption	algorithm	for	OpenSSL	is	des-ede3-cbc 	using
PBKDF2 	with	2048	iterations	for	generating	the	encryption	key	from	the	user's	password.
Even	if	this	encryption	algorithm	is	quite	good,	the	number	of	iterations	of	PBKDF2	is	not
optimal;	zend-crypt	improves	on	this	in	a	variety	of	ways,	out-of-the-box.	As	demonstrated
above,	I	use		Zend\Crypt\BlockCipher		to	encrypt	the	private	key;	this	class	provides	encrypt-
then-authenticate 	using	the	AES-256	algorithm	for	encryption	and	HMAC-SHA-256	for
authentication.	Moreover,		BlockCipher		uses	the	PBKDF2 	algorithm	to	derivate	the
encryption	key	from	the	user's	key	(password).	The	default	number	of	iterations	for	PBKDF2
is	5000,	and	you	can	increase	it	using	the		BlockCipher::setKeyIteration()		method.

In	the	example,	I	stored	the	public	and	private	keys	in	two	files	named,	respectively,
	$username.pub		and		$username	.	Because	the	private	file	is	encrypted,	using	the	user's
password,	it	can	be	access	only	by	the	user.	This	is	a	very	important	aspect	for	the	security
of	the	entire	system	(we	take	for	granted	that	the	web	application	stores	the	hashes	of	the
user's	passwords	using	a	secure	algorithm	such	as	bcrypt).

Once	we	have	the	public	and	private	keys	for	the	users,	we	can	start	using	the	hybrid
cryptosystem	provided	by	zend-crypt.	For	instance,	imagine	Alice	wants	to	send	an
encrypted	message	to	Bob:

10
11

12
11

13

End-to-end	encryption	with	Zend	Framework	3

144

use	Zend\Crypt\Hybrid;

use	Zend\Crypt\BlockCipher;

$sender			=	'alice';

$receiver	=	'bob';

$password	=	'test';	//	bob's	password

$msg	=	sprintf('A	secret	message	from	%s!',	$sender);

//	encrypt	the	message	using	the	public	key	of	the	receiver

$publicKey		=	file_get_contents($receiver	.	'.pub');

$hybrid					=	new	Hybrid();

$ciphertext	=	$hybrid->encrypt($msg,	$publicKey);

//	send	the	ciphertext	to	the	receiver

//	decrypt	the	private	key	of	bob

$blockCipher	=	BlockCipher::factory('openssl',	['algo'	=>	'aes']);

$blockCipher->setKey($password);

$privateKey	=	$blockCipher->decrypt(file_get_contents($receiver));

$plaintext	=	$hybrid->decrypt($ciphertext,	$privateKey);

printf("%s\n",	$msg	===	$plaintext	?	"The	message	is:	$msg"	:	'Error!');

The	above	example	demonstrates	encrypting	information	between	two	users.	Of	course,	in
this	case,	the	sender	(Alice)	knows	the	message	because	she	wrote	it.	More	in	general,	if
we	need	to	store	a	secret	between	multiple	users,	we	need	to	specify	the	public	keys	to	be
used	for	encryption.

The	hybrid	component	of	zend-crypt	supports	encrypting	messages	for	multiple	recipients.
To	do	so,	pass	an	array	of	public	keys	in	the		$publicKey		parameter	of
	Zend\Crypt\Hybrid::encrypt($data,	$publicKey)	.

Below	demonstrates	encrypting	a	file	for	two	users,	Alice	and	Bob.

End-to-end	encryption	with	Zend	Framework	3

145

use	Zend\Crypt\Hybrid;

use	Zend\Crypt\BlockCipher;

$data				=	file_get_contents('path/to/file/to/protect');

$pubKeys	=	[

		'alice'	=>	file_get_contents('alice.pub'),

		'bob'			=>	file_get_contents('bob.pub')

];

$hybrid					=	new	Hybrid();

//	Encrypt	using	the	public	keys	of	both	alice	and	bob

$ciphertext	=	$hybrid->encrypt($data,	$pubKeys);

file_put_contents('file.enc',	$ciphertext);

$blockCipher	=	BlockCipher::factory('openssl',	['algo'	=>	'aes']);

$passwords	=	[

		'alice'	=>	'password	of	Alice',

		'bob'			=>	'password	of	Bob'

];

//	decrypt	using	the	private	keys	of	alice	and	bob,	one	at	time

foreach	($passwords	as	$id	=>	$pass)	{

		$blockCipher->setKey($pass);

		$privateKey	=	$blockCipher->decrypt(file_get_contents($id));

		$plaintext		=	$hybrid->decrypt($ciphertext,	$privateKey,	null,	$id);

		printf("%s	for	%s\n",	$data	===	$plaintext	?	'Decryption	ok'	:	'Error',	$id);

}

For	decryption,	I	used	a	hard	coded	password	for	the	users.	Usually,	the	user's	password	is
provided	during	the	login	process	of	a	web	application	and	should	not	be	stored	as
permanent	data;	for	instance,	the	user's	password	can	be	saved	in	a	PHP	session	variable
for	temporary	usage.	If	you	use	sessions	to	save	the	user's	password,	ensure	that	data	is
protected;	the	PHP-Secure-Session 	library	or	the	Suhosin 	PHP	extension	will	help	you
do	so.

To	decrypt	the	file,	I	used	the		Zend\Crypt\Hybrid::decrypt()		method,	where	I	specified	the
	$privateKey	,	a		null		passphrase,	and	finally	the		$id		of	the	privateKey.	This	parameters
are	necessary	to	find	the	correct	key	to	use	in	the	header	of	the	encrypted	message.

Footnotes

.	https://github.com/zendframework/zend-crypt	↩

.	https://docs.zendframework.com/zend-crypt/hybrid/	↩

14 15

1

2

3

End-to-end	encryption	with	Zend	Framework	3

146

https://github.com/zendframework/zend-crypt
https://docs.zendframework.com/zend-crypt/hybrid/

.	https://en.wikipedia.org/wiki/End-to-end_encryption	↩

.	https://en.wikipedia.org/wiki/Advanced_Encryption_Standard	↩

.	https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29	↩

.	https://en.wikipedia.org/wiki/Authenticated_encryption	↩

.	https://www.whatsapp.com/faq/en/general/28030015	↩

.	http://php.net/manual/en/book.openssl.php	↩

.	https://wiki.php.net/rfc/openssl_aead	↩

.	https://en.wikipedia.org/wiki/Triple_DES	↩

.	https://en.wikipedia.org/wiki/PBKDF2	↩

.	http://www.daemonology.net/blog/2009-06-24-encrypt-then-mac.html	↩

.	https://en.wikipedia.org/wiki/Bcrypt	↩

.	https://github.com/ezimuel/PHP-Secure-Session	↩

.	https://suhosin.org	↩

3

4

5

6

7

8

9

10

11

12

13

14

15

End-to-end	encryption	with	Zend	Framework	3

147

https://en.wikipedia.org/wiki/End-to-end_encryption
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Authenticated_encryption
https://www.whatsapp.com/faq/en/general/28030015
http://php.net/manual/en/book.openssl.php
https://wiki.php.net/rfc/openssl_aead
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/PBKDF2
http://www.daemonology.net/blog/2009-06-24-encrypt-then-mac.html
https://en.wikipedia.org/wiki/Bcrypt
https://github.com/ezimuel/PHP-Secure-Session
https://suhosin.org

Create	ZPKs	the	Easy	Way
by	Enrico	Zimuel

Zend	Server 	provides	the	ability	to	deploy	applications	to	a	single	server	or	cluster	of
servers	via	the	ZPK 	package	format.	We	offer	the	package	zfcampus/zf-deploy 	for
creating	ZPK	packages	from	Zend	Framework	and	Apigility	applications,	but	how	can	you
create	these	for	Expressive,	or,	really,	any	PHP	application?

Requirements
To	create	the	ZPK,	you	need	a	few	things:

The		zip		binary.	ZPKs	are	ZIP	files	with	specific	artifacts.
The		composer		binary,	so	you	can	install	dependencies.
An		.htaccess		file,	if	your	Zend	Server	installation	is	using	Apache.
A		deployment.xml		file.

htaccess
If	you	are	using	Apache,	you'll	want	to	make	sure	that	you	setup	things	like	rewrite	rules	for
your	application.	While	this	can	be	done	when	defining	the	vhost	in	the	Zend	Server	admin
UI,	using	an		.htaccess		file	makes	it	easier	to	make	changes	to	the	rules	between
deployments.

The	following		.htaccess		file	will	work	for	many	(most?)	PHP	projects.	Place	it	relative	to
your	project's	front	controller	script;	in	the	case	of	Expressive,	Zend	Framework,	and
Apigility,	that	would	mean		public/index.php	,	and	thus		public/.htaccess	:

1
2 3

Create	ZPKs	the	Easy	Way

148

https://www.zimuel.it

RewriteEngine	On

#	The	following	rule	tells	Apache	that	if	the	requested	filename

#	exists,	simply	serve	it.

RewriteCond	%{REQUEST_FILENAME}	-s	[OR]

RewriteCond	%{REQUEST_FILENAME}	-l	[OR]

RewriteCond	%{REQUEST_FILENAME}	-d

RewriteRule	^.*$	-	[NC,L]

#	The	following	rewrites	all	other	queries	to	index.php.	The

#	condition	ensures	that	if	you	are	using	Apache	aliases	to	do

#	mass	virtual	hosting,	the	base	path	will	be	prepended	to

#	allow	proper	resolution	of	the	index.php	file;	it	will	work

#	in	non-aliased	environments	as	well,	providing	a	safe,	one-size

#	fits	all	solution.

RewriteCond	%{REQUEST_URI}::$1	^(/.+)(.+)::\2$

RewriteRule	^(.*)	-	[E=BASE:%1]

RewriteRule	^(.*)$	%{ENV:BASE}index.php	[NC,L]

deployment.xml
The		deployment.xml		tells	Zend	Server	about	the	application	you	are	deploying.	What	is
listed	below	will	work	for	Expressive,	Zend	Framework,	and	Apigility	applications,	and	likely
a	number	of	other	PHP	applications.	The	main	things	to	pay	attention	to	are:

The		name		should	typically	match	the	application	name	you've	setup	in	Zend	Server.
The		version.release		value	should	be	updated	for	each	release;	this	allows	you	to	use
rollback	features.
The		appdir		value	is	the	project	root.	An	empty	value	indicates	the	same	directory	as
the		deployment.xml		lives	in.
The		docroot		value	is	the	directory	from	which	the	vhost	will	serve	files.

So,	as	an	example:

<?xml	version="1.0"	encoding="utf-8"?>

<package	version="2.0"	xmlns="http://www.zend.com/server/deployment-descriptor/1.0">

				<type>application</type>

				<name>API</name>

				<summary>API	for	all	the	things!</summary>

				<version>

								<release>1.0</release>

				</version>

				<appdir></appdir>

				<docroot>public</docroot>

</package>

Create	ZPKs	the	Easy	Way

149

Installing	dependencies
When	you're	ready	to	build	a	package,	you	should	install	your	dependencies.	However,	don't
install	them	any	old	way;	install	them	in	a	production-ready	way.	This	means:

Specifying	that	composer	optimize	the	autoloader	(--optimize-autoloader).
Use	production	dependencies	only	(--no-dev).
Prefer	distribution	packages	(versus	source	installs)	(--prefer-dist).

So:

$	composer	install	--no-dev	--prefer-dist	--optimize-autoloader

Create	the	ZPK
Finally,	we	can	now	create	the	ZPK,	using	the		zip		command:

$	zip	-r	api-1.0.0.zpk	.	-x	api-1.0.0.zpk	-x	'*.git/*'

This	creates	the	file		api-1.0.0.zpk		with	all	contents	of	the	current	directory	minus	the		.git	
directory	and	the	ZPK	itself	(these	are	excluded	via	the		-x		flags).	(You	may	want/need	to
specify	additional	exclusions;	the	above	are	typical,	however.)

You	can	then	upload	the	ZPK	to	the	web	interface,	or	use	the	Zend	Server	SDK .

Simple	example:	single-directory	PoC
Let's	say	you	want	to	do	a	proof-of-concept,	and	will	be	creating	an		index.php		in	the	project
root	to	test	out	an	idea.	You	would	use	the	above		.htaccess	,	but	keep	it	in	the	project	root.
Your		deployment.xml		would	look	the	same,	except	that	the		docroot		value	would	be	empty:

4

Create	ZPKs	the	Easy	Way

150

<?xml	version="1.0"	encoding="utf-8"?>

<package	version="2.0"	xmlns="http://www.zend.com/server/deployment-descriptor/1.0">

				<type>application</type>

				<name>POC</name>

				<summary>Proof-of-concept	of	a	very	cool	idea</summary>

				<version>

								<release>0.1.0</release>

				</version>

				<appdir></appdir>

				<docroot></docroot>

</package>

You'd	then	run:

$	zip	-r	poc-0.1.0.zpk	.	-x	poc-0.1.0.zpk

Done!

Fin
ZPKs	make	creating	and	staging	deployment	packages	fairly	easy	—	once	you	know	how	to
create	the	packages.	We	hope	that	this	post	helps	demystify	the	first	steps	in	creating	a	ZPK
for	your	application.

Visit	the	Zend	Server	documentation 	for	more	information	on	ZPK	structure.

Footnotes

.	http://www.zend.com/en/products/zend_server	↩

.	http://files.zend.com/help/Zend-Server/content/application_package.htm	↩

.	https://github.com/zfcampus/zf-deploy	↩

.	https://github.com/zend-patterns/ZendServerSDK	↩

.	http://files.zend.com/help/Zend-
Server/content/understanding_the_application_package_structure.htm	↩

5

1

2

3

4

5

Create	ZPKs	the	Easy	Way

151

http://www.zend.com/en/products/zend_server
http://files.zend.com/help/Zend-Server/content/application_package.htm
https://github.com/zfcampus/zf-deploy
https://github.com/zend-patterns/ZendServerSDK
http://files.zend.com/help/Zend-Server/content/understanding_the_application_package_structure.htm

Using	Laravel	Homestead	with	Zend
Framework	Projects
by	Enrico	Zimuel

Laravel	Homestead 	is	an	interesting	project	by	the	Laravel	community	that	provides	a
Vagrant 	box	for	PHP	developers.	It	includes	a	full	set	of	services	for	PHP	developers,	such
as	the	Nginx	web	server,	PHP	7.1,	MySQL,	Postgres,	Redis,	Memcached,	Node,	and	more.

One	the	most	interesting	features	of	this	project	is	the	ability	to	enable	it	per	project.	This
means	you	can	run	a	vagrant	box	for	your	specific	PHP	project.

In	this	article,	we'll	examine	using	it	for	Zend	Framework	MVC,	Expressive,	and	Apigility
projects.	In	each	case,	installation	and	usage	is	exactly	the	same.

Install	the	Vagrant	box
The	first	step	is	to	install	the	laravel/homestead 	vagrant	box.	This	box	works	with	a	variety
of	providers:	VirtualBox	5.1 ,	VMWare ,	or	Parallels .

We	used	VirtualBox	and	the	following	command	to	install	the	laravel/homestead	box:

$	vagrant	box	add	laravel/homestead

The	box	is	981	MB,	so	it	will	take	some	minutes	to	download.

Homestead,	by	default,	uses	the	host	name		homestead.app	,	and	requires	that	you	update
your	system	hosts	file	to	point	that	domain	to	the	virtual	machine	IP	address.	To	faciliate
that,	Homestead	provides	integration	with	the	vagrant-hostsupdater 	Vagrant	plugin.	We
recommend	installing	that	before	your	initial	run	of	the	virtual	machine:

$	vagrant	plugin	install	vagrant-hostsupdater

Use	Homestead	in	ZF	projects
Once	you	have	installed	the	laravel/homestead	vagrant	box,	you	can	use	it	globally	or	per
project.

1
2

3
4 5 6

7

Using	Laravel	Homestead	with	Zend	Framework	Projects

152

https://www.zimuel.it

If	we	install	Homestead	per-project,	we	will	have	a	full	development	server	configured
directly	in	the	local	folder,	without	sharing	services	with	other	projects.	This	is	a	big	plus!

To	use	Homestead	per-project,	we	need	to	install	the	laravel/homestead 	package	within	our
Zend	Framework,	Apigility,	or	Expressive	project.	This	can	be	done	using	Composer 	with
the	following	command:

$	composer	require	--dev	laravel/homestead

After	installation,	execute	the		homestead		command	to	build	the		Vagrantfile	:

$	vendor/bin/homestead	make

This	command	creates	both	the		VagrantFile		and	a		Homestead.yaml		configuration	file.

Configuring	Homestead
By	default,	the	vagrant	box	is	set	up	at	address		192.168.10.10		with	the	hostname
	homestead.app	.	You	can	change	the	IP	address	in		Homestead.yaml		if	you	want,	as	well	as
the	hostname	(via	the		sites[].map		key).

The		Homestead.yaml		configuration	file	contains	all	details	about	the	vagrant	box
configuration.	The	following	is	an	example:

8
9

Using	Laravel	Homestead	with	Zend	Framework	Projects

153

ip:	"192.168.10.10"

memory:	2048

cpus:	1

hostname:	expressive-homestead

name:	expressive-homestead

provider:	virtualbox

authorize:	~/.ssh/id_rsa.pub

keys:

				-	~/.ssh/id_rsa

folders:

				-	map:	"/home/enrico/expressive-homestead"

						to:	"/home/vagrant/expressive-homestead"

sites:

				-	map:	homestead.app

						to:	"/home/vagrant/expressive-homestead/public"

databases:

				-	homestead

This	configuration	file	is	very	simple	and	intuitive;	for	instance,	the	folders	to	be	used	are
reported	in	the		folders		section;	the		map		value	is	the	local	folder	of	the	project,	the		to	
value	is	the	folder	on	the	virtual	machine.

If	you	want	to	add	or	change	more	features	in	the	virtual	machine	you	can	used	the
	Homestead.yaml		configuration	file.	For	instance,	if	you	prefer	to	add	MariaDB	instead	of
MySQL,	you	need	to	add	the		mariadb		option:

ip:	"192.168.10.10"

memory:	2048

cpus:	1

hostname:	expressive-homestead

name:	expressive-homestead

provider:	virtualbox

mariadb:	true

This	option	will	remove	MySQL	and	install	MariaDB.

Using	Laravel	Homestead	with	Zend	Framework	Projects

154

SSH	keys	managed	by	GPG

One	of	our	team	uses	the	gpg-agent	as	an	ssh-agent,	which	caused	some	configuration
problems	initially,	as	the		~/.ssh/id_rsa		and	its		.pub		sibling	were	not	present.

When	using	gpg-agent	for	serving	SSH	keys,	you	can	export	the	key	using		ssh-add	-
L	.	This	may	list	several	keys,	but	you	should	be	able	to	find	the	correct	one.	Copy	it	to
the	file		~/.ssh/gpg_key.pub	,	and	then	copy	that	file	to		~/.ssh/gpg_key.pub.pub	.	Update
the		Homestead.yaml		file	to	reflect	these	new	files:

authorize:	~/.ssh/gpg_key.pub.pub

keys:

				-	~/.ssh/gpg_key.pub

The	gpg-agent	will	take	care	of	sending	the	appropriate	key	from	there.

Running	Homestead
To	run	the	vagrant	box,	execute	the	following	within	your	project	root:

$	vagrant	up

If	you	open	a	browser	to		http://homestead.app		you	should	now	see	your	application
running.

Manually	managing	your	hosts	file

If	you	chose	not	to	use	vagrant-hostsupdater,	you	will	need	to	update	your	system
hosts	file.

On	Linux	and	Mac,	update	the		/etc/hosts		file	to	add	the	following	line:

192.168.10.10	homestead.app

On	Windows,	the	host	file	is	located	in		C:\Windows\System32\drivers\etc\hosts	.

More	information

Using	Laravel	Homestead	with	Zend	Framework	Projects

155

We've	tested	this	setup	with	each	of	the	Zend	Framework	zend-mvc	skeleton	application,
Apigility,	and	Expressive,	and	found	the	setup	"just	worked"!	We	feel	it	provides	excellent
flexibility	in	setting	up	development	environments,	giving	developers	a	wide	range	of	tools
and	technologies	to	work	with	as	they	develop	applications.

For	more	information	about	Laravel	Homestead,	visit	the	official	documentation 	of	the
project.

Footnotes

.	https://laravel.com/docs/5.4/homestead	↩

.	https://www.vagrantup.com/	↩

.	https://atlas.hashicorp.com/laravel/boxes/homestead	↩

.	https://www.virtualbox.org/wiki/Downloads	↩

.	https://www.vmware.com/	↩

.	http://www.parallels.com/products/desktop/	↩

.	https://github.com/cogitatio/vagrant-hostsupdater	↩

.	https://github.com/laravel/homestead	↩

.	https://getcomposer.org/	↩

.	https://laravel.com/docs/5.4/homestead	↩

10

1

2

3

4

5

6

7

8

9

10

Using	Laravel	Homestead	with	Zend	Framework	Projects

156

https://laravel.com/docs/5.4/homestead
https://www.vagrantup.com/
https://atlas.hashicorp.com/laravel/boxes/homestead
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/
http://www.parallels.com/products/desktop/
https://github.com/cogitatio/vagrant-hostsupdater
https://github.com/laravel/homestead
https://getcomposer.org/
https://laravel.com/docs/5.4/homestead

Copyright	note

	

Rogue	Wave	helps	thousands	of	global	enterprise	customers	tackle	the	hardest	and	most
complex	issues	in	building,	connecting,	and	securing	applications.	Since	1989,	our
platforms,	tools,	components,	and	support	have	been	used	across	financial	services,
technology,	healthcare,	government,	entertainment,	and	manufacturing,	to	deliver	value	and
reduce	risk.	From	API	management,	web	and	mobile,	embeddable	analytics,	static	and
dynamic	analysis	to	open	source	support,	we	have	the	software	essentials	to	innovate	with
confidence.

https://www.roguewave.com/

©	2017	Rogue	Wave	Software,	Inc.	All	rights	reserved

Copyright	note

157

https://www.roguewave.com/

	Introduction
	About the authors
	zend-config for all your configuration needs
	Manage your application with zend-config-aggregator
	Convert objects to arrays and back with zend-hydrator
	Scrape Screens with zend-dom
	Paginating data collections with zend-paginator
	Logging PHP applications
	Discover and Read RSS and Atom Feeds
	Create RSS and Atom Feeds
	Manage permissions with zend-permissions-rbac
	Manage permissions with zend-permissions-acl
	Implement JSON-RPC with zend-json-server
	Implement an XML-RPC server with zend-xmlrpc
	Implement a SOAP server with zend-soap
	Context-specific escaping with zend-escaper
	Filter input using zend-filter
	Validate input using zend-validator
	Validate data using zend-inputfilter
	End-to-end encryption with Zend Framework 3
	Create ZPKs the Easy Way
	Using Laravel Homestead with Zend Framework Projects
	Copyright note

