
www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

Executive Summary

Teams that build PHP in-house often experience unforeseen costs and

consequences. This white paper discusses those costs and how teams

can avoid them.

W H I T E PA P E R

The Costs of Building
PHP In-House

WHITE PAPER

The Costs of Building PHP In-House

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

Contents

Why Do Teams Want to Build PHP In-House? 3

What Does Building PHP Look Like in Practice? 3

The Costs of Building PHP In-House 4

Alternatives to Building PHP In-House 7

Learn More About PHP LTS Options From Zend 9

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

3 | The Costs of Building PHP In-House

Why Do Teams Want to Build PHP
In-House?
There are a range of reasons why teams might want

to build PHP in-house. It could be as simple as a team

wanting to use a different PHP version than the one

provided by their operating system. As an example,

Linux operating systems generally provide a single PHP

version per operating system version. Ubuntu 20.04,

for instance, ships with PHP 7.4. If you wanted to use a

different PHP version, you would either need to switch to

a version of the operating system that shipped that PHP

version, which could impact other system dependencies

and security, or you would need to manually build PHP

on your existing system. Similarly, teams might want to

pin to a very specific PHP version regardless of which

operating system they are on. That decision is often made

to insulate the team from operating system changes.

As an example, a team might need to upgrade to a newer

version of an operating system after their previous version

reached end of life. However, they might not want to

perform a PHP migration at the same time. For risk-averse

organizations, like those in the financial or healthcare

verticals, performing those migrations in tandem might

introduce an unacceptable level of risk. Pinning to a

specific version for long enough will lead to another

use case for building PHP in-house: end of life patching.

Teams that want to stay on an end of life PHP version will

either need to find commercial LTS or build from source

and backport security patches themselves.

A less common reason why teams might want to build

PHP in-house is performance optimization. In certain

situations, streamlined PHP runtimes (with pared down

integrations and features) can lead to reduced memory

usage and better overall performance. That said, this is

an older approach, and is largely obsolete with modern

packaging, which is modular and allows installing and

enabling only the PHP extensions you require.

As we discuss later, all of these approaches can introduce

both risk and costs to teams that are not equipped to

handle them.

What Does Building PHP Look Like
in Practice?
Building PHP in-house might seem simple at first. Getting

started is as simple as downloading your desired version

from php.net. You will find several tarball archives with

varying compression schemes, including gzip, bzip, and

xz; file sizes change dramatically between these different

zipping mechanisms. For teams that want to build based

on end of life versions, they will need to find their version

in the archives

For the purposes of this white paper,
we will discuss from the perspective
of a team that wants to compile on

Linux. For teams that want to compile
on IBM I or Windows, there will be

issues specific to those environments
that they will need to consider.

Once you have your archive extracted, you will run

./configure, which is a script that works with autoconf

in order to prepare the package for compilation. Run

./configure --help to get a list of the various

compilation options. The first set of options presented

are common options you see anytime you configure

an application using autoconf, and includes things

such as where cache files are stored, the prefix used for

installation, etc.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

4 | The Costs of Building PHP In-House

But this is only one screen of those options. This is just the

tip of the iceberg, however; there are 14 additional pages

(assuming a standard terminal size) of compile options,

typically relating to individual extensions or core PHP

features. That means you need to know exactly which

ones you want to enable and disable.

However, just building that basic PHP version from an

existing version is relatively easy. The true complexity,

and the accompanying costs, come next.

The Costs of Building PHP In-House
Building PHP in-house might seem like a cheaper

alternative to paying for long-term support at first, but

there are a number of costs teams will need to account

for before moving forward. In the following sections,

we detail some of those costs, including dependencies,

testing, installation and deployment, packaging,

and more.

DEPENDENCIES

Building PHP requires standard build tools: autoconf,

make, GCC, the C++ compiler, and more. Typically,

your operating system provides these to you via a

single package. However, some features of the PHP

core functionality, as well as individual extensions, have

additional dependencies. Some are packaged with the

PHP source, but others are not.

As an example, if you need MySQL or MariaDB support,

you’ll need the development packages for those. If you

were to pass the appropriate flag to ./configure to

enable MySQL or MariaDB support without first installing

the development libraries, the script will fail and report

an error indicating you are missing the libraries. The

messages provided are generic, however, and do not

indicate the system package you need; you will need to

determine that on your own.

Once you have the correct package tracked down, you

will install the package and start the whole process over

again. Because it is a linear configuration process, it will

always provide an error for the first issue it runs into, then

stop. This means, in a best case scenario, you will go

back and forth configuring, hunting down packages, and

installing packages until you have all the packages you

need in place. We say this is a “best case” because there

are going to be cases where you find that versions of

dependencies available on your operating system are not

even compatible with PHP, so you will need to compile

them separately then tell configure where they live. Not

everyone will know how to overcome these issues, and it

can be a big time-sink for teams completing the process

for the first time.

After you are able to successfully configure, you will call

make to generate a Makefile. This will take time. Even

with a modern multi-core machine with lots of memory

and an SSD, it can take upward of 30 minutes depending

on the extensions you build.

OpenSSL or MySQL, as an example, are large and

can add significant time to the build process. Even

when configuration succeeds and all dependencies

are in place, it’s not uncommon to encounter a

compilation error. This is often due to slight differences

in dependencies, and the result will be additional time

spent troubleshooting error messages, correcting

dependencies, and reconfiguring the build.

TESTING

Once you finish running make, it will tell you to run make

test. This command runs the PHP test suite, which

generates a long list of results, which you should pipe

to a log file for review. At the tail end of the results, you

will see a tally of how many tests were run, including

how many were skipped, how many failed, and how

many generated warnings. It is typically safe to ignore

these, but you will always want to test your application

against your build to make sure that it is actually going to

run – especially if there are extensions where you have

warnings or failures against tests that were specific to

that extension, or for any functionality that you consume

within PHP itself.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

5 | The Costs of Building PHP In-House

There is a lot that can go wrong here. You will always see

a number of skipped tests, as well as a number marked

as “expected” test failures. This means you will need to

distinguish between tests that are safe to ignore, and tests

that are NOT safe to ignore. Establishing a baseline of

acceptable failures is not a onetime act, either. Teams will

need to evaluate their baseline every time they encounter

new failures when building.

This means that there will need to be some level of

automation, and not all teams will be equipped to set

up that automation. The output from this test file is a

relatively irregular structure, so understanding the relevant

differences and how to parse them will be difficult.

If you are backporting security patches, you’re not quite

done with testing. For each patch you deploy, you need to

ensure that it’s patching the vulnerability and then verify

that the test passes. To do that, you’ll need to know the

test name, and you’ll need to look at logs from your test

results to make sure it passed. If it didn’t, that means that

it was either incorrect or didn’t patch the issue cleanly. If

that happens, you’ll need to have enough C or C++ to go

through and analyze and fix those issues.

INSTALLATION AND DEPLOYMENT

At this point, you have built PHP and are ready to deploy,

posing your next challenge. One thing to note here is that

you should never build on your deployment platform,

and you should never have build tools on your production

machine. Those tools can make it easier for attackers to

gain access to the system and build malware. This can lead

to things like privilege escalation, which can lead to even

worse outcomes.

Because of that, you will want to build on a dedicated

machine, and push to your production machines. But

doing that is easier said than done. Teams can roll their own

packaging, but getting the package to the deployment

system is a different story. And once there, you will also

need to ensure that the appropriate system dependencies

are in place. Any development library you installed in order

to fulfill a compilation dependency will require that the

target system install the associated shared libraries. This

will add complexity to your deployment solution.

Packaging

You might think that packaging would just entail creating

an archive file containing the PHP binary and other

artifacts that you can drop onto a production system.

This could be a zip file or a compressed tarball that you

unarchive on the target system to a known tree. However,

you also need to consider the various dependencies you

identified while building PHP, and account for those as

part of your packaging process.

When it comes to your PHP build dependencies, there

are generally two types of dependency packages,

dynamic library packages, which are small ones that can

be consumed; and development packages, which have

the source code that you are going to link against and

compile with.

When you build, you use the development packages.

On your target (production) machines, you use dynamic

library packages. As an example, if you are compiling

with cURL on a Debian-based operating system, you

might use “libcurl-dev” to compile PHP; your production

machine will require the “libcurl” package. Because of

that, when creating your PHP package, it will need to

have a script in place to install all required dynamic

library dependencies.

As such, creating the package isn’t enough; you will also

need mechanisms for running these scripts for installing

dependencies. And, better, you should include some

sort of script to verify the installation when complete; it

should validate the PHP version installed, the location of

configuration files, and that the expected modules

are enabled.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

6 | The Costs of Building PHP In-House

Creating OS Packages

There is already a solution for everything detailed in the

previous section: operating system packages. Most Linux

operating systems use a package manager for managing

system packages and their dependencies, and you can

write your own packages. Most package managers allow

specifying the file layout, package dependencies, and

even pre- and post-installation scripts. This means you

do not need to build your own installer or manager; you

instead build a package from the artifacts of

compiling PHP.

But what happens if you change operating systems

or versions? If you change a version of your operating

system, you will often find the package name or package

version for your dependency has changed. This means

you will need to update your package to reflect those

dependencies, which will often require re-building PHP.

Creating a package that works with your package

manager is only the first step of the solution; you still

need to determine how to get it to your production

system and install it.

You can push it manually. You will then need to invoke

the package manager on the target system in order to

install it. Depending on the package manager, this may

not actually install dependencies. As an example, on

Debian systems, if you use dpkg -i to install a package,

it won’t install dependencies; you have to run

apt-get install --fix-broken afterwards. While

it let’s you know that you’re missing dependencies

(and which ones they are), and you can fix it, it’s still an

extra step. (You can now use apt install ./package-

name.deb in modern Debian systems, which will install

dependencies as well.)

Ultimately, you could set up a package repository based

on the operating system and package management

tool you are using and set up that package repository

on your target machine, but that means you will have

another piece of infrastructure to maintain. That means

keeping that infrastructure up to date and ensuring that

it has additional security in place. You will likely need to

put your package repository behind a firewall, which

means that your build and production systems need to

have access to that area. By this point, you are talking

about a build server and a package repository, so you

have multiple pieces of infrastructure that will need to be

maintained – and that’s in addition to the days and hours

your expert personnel will need to compile all of this.

When to Build

The next question you will need to answer is, how is your

team going to know when to create a new build? The

release cadence for PHP is such that there is a new release

every month. However, if you are only worried about a

version that has reached end of life, then you may only

be worried about CVEs and whether or not they apply to

your application.

That means that when a new release is issued, you

will need to read through the CVEs that are patched

in that new release and determine if they impact your

applications. If they do, then you know you will need

to build.

But that brings more questions:

• How do you build the package?

• How do you test and validate it?

• How do you package PHP?

That means you need to have infrastructure for a

CI/CD system, and a team with the requisite skills for

creating and maintaining that CI/CD system. Of course,

it’s possible you already have CI/CD set up for your

PHP application. Even then, the needs for building the

language are different than the needs for building an

application on top of that language. That means you

will have different tool chains, and that you will need to

maintain those toolchains going forward.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

7 | The Costs of Building PHP In-House

Lastly, how quickly can you do all of the above?

If there’s a 0-day CVE announced by PHP, how quickly

can your team find out that it exists, evaluate it, backport

the patches, test everything, and deploy it? Does your

team have the time to drop what they are doing and

prioritize this? Are you willing, as a manager, to hire

someone whose only job is to build your PHP instead of

working on the actual applications that you’re building?

What happens if they are on vacation with no cellular

service or internet access when that 0-day CVE

comes out?

Personnel Skills

Teams considering building and deploying their own PHP

need to honestly evaluate the security and programming

expertise of the personnel they have in place. Do they

have the skills necessary to evaluate the security patches

against the versions you are using? If not, you should not

be backporting security patches. Doing so will put your

business at risk.

Security patches aside, does your team have skills

necessary to resolve issues found during testing and

validation? There are times where a new patch will

introduce new test failures.

Are you able to put automation in place to understand

when a new failure happened against your baseline?

Does your team have the expertise needed to determine

if it’s related to the patch, or something else? If it’s

unrelated, can they resolve it in a way that will allow your

builds to still work?

Another thing to consider for teams is, what happens if

someone critical to this process leaves the company? Do

you have a contingency plan in place if you are unable to

build a patch for a critical CVE? These are all questions

you will need to have ironclad answers to before you

commit your organization to building your own PHP.

Development Impact

An often-overlooked area for maintaining end of life

applications is the lost-opportunity cost of spending

your resource hours on building your PHP instead

of developing applications. PHP releases happen

monthly, which means that, in any given month, there’s

a possibility that you will need to build PHP. That means

you need to ensure your development team either has

buffer time built into their schedule, or have dedicated

personnel for this.

Ultimately, the decision to build PHP in-house comes

down to cost. The up-front costs of dedicated personnel

and the costs of maintaining infrastructure for building

and patching can be substantial, and that doesn’t

account for the potential impact to your business

opportunity costs, and the lost of trust that can happen if

you run a vulnerable PHP version.

Alternatives to Building PHP
In-House

If you have made it this far, and you were considering

building PHP in-house, chances are you are second-

guessing that opinion. The good news is that there are

some good, cost-effective alternatives. In the following

sections, we look at a few of those options, including

using versions shipped with your operating system,

community PHP versions, or, our favorite, commercial

long-term support.

USE THE PHP VERSION SHIPPED WITH YOUR
OPERATING SYSTEM

Generally speaking, an operating system provides

three to five years of LTS. During this time, it will provide

security patches for all the software it contains, including

its official repositories.

The issue with that approach is that if you want to take

advantage of newer PHP versions, you can’t. You’re

locked into the version of PHP that ships with your

operating system, for better or worse.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

WHITE PAPER

8 | The Costs of Building PHP In-House

The other thing to consider is that some of the libraries

that your application depends on may eventually end

support for the PHP version you are on, or develop new

versions that support PHP versions beyond the one

you’re currently on.

As an example, if you use Composer, you can use it to

update your application libraries. But, you might find

that some of those libraries release new versions that no

longer support the PHP version you are on. This could

mean that you no longer get security patches for those

libraries, which means your security is tied to not only the

PHP version you are on and the fact it receives security

patches via the operating system, but also to whether

or not your libraries are getting updated with security

patches. If the libraries are not patching versions that

support your PHP version, you may still

be vulnerable.

USE COMMUNITY PHP VERSIONS

If you can’t use the PHP version shipped with your

operating system, the next alternative is using community

PHP versions. For instance, if you want to run 8.0 or 8.1,

and you are on Ubuntu 20.04, you could install the Sury

repository. This allows you to run multiple different PHP

versions and select which version you want. Or you could

run multiple versions in parallel on Red Hat Enterprise

Linux (RHEL) or other RHEL variants that are

compatible with it.

The thing to understand is that these, generally, don’t

backport security patches for end of life versions of PHP.

So, even though you’re using this community version,

you actually may not be getting the security patches

you need in order to ensure your application is patched

against CVEs that have been released.

USE COMMERCIAL PHP LTS VERSIONS

The other option, and one a lot of enterprise

organizations turn to, is commercial PHP LTS. This

approach best addresses many of the reasons why teams

build PHP in-house. Zend, as an example, provides

commercial PHP LTS for a minimum of two years after

community support end of life, with some versions (like

PHP 7.4) going far beyond that. Commercial PHP LTS

from Zend also includes SLA-backed support, which can

go up to 24/7/365 depending on the package.

Aside from the immediate benefit of being able to pin to

PHP versions for longer periods of time, there is also the

benefit of ensured compliance. If your organization has

PCI or SOX standards that they need to comply with, they

require you to be on secure versions of that software.

The last benefit of this approach, and there are others

we don’t cover here, is that using commercial PHP

LTS versions allows teams the agility to upgrade their

operating system and their PHP separately. While it might

seem like a small thing, for teams managing complex or

numerous applications, having the freedom to upgrade

these separately can greatly reduce the complexity of

managing these processes simultaneously.

WHITE PAPER

9 | The Costs of Building PHP In-House

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome
complex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio
includes solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source
support, repository management, static & dynamic code analysis, version control, and more. With over 9,000 customers, Perforce is trusted
by the world’s leading brands, including NVIDIA, Pixar, Scania, Ubisoft, and VMware. For more information, visit www.perforce.com.

www.zend.com Zend by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (1220TP23)

Closing Thoughts
Ultimately, the choice between building PHP in-house

and finding an alternative means of supported PHP

comes down to cost. If you have the infrastructure

in place, you have the skilled staff in place with the

bandwidth needed to continuously execute on this

concept, and you know with 100% certainty that the

costs and consequences of maintaining that process are

less than the costs and consequences of all available

alternatives, then building PHP in-house may be an

option. Even then, things can change, and the costs of

building PHP in-house can quickly become a burden.

The good news is that there are a number of alternatives

that can help teams avoid this burden.

Learn More About PHP LTS Options
From Zend
Zend offers expert, dependable, long-term support for

PHP that includes includes automated PHP updates —

plus on-demand, consultative support from a certified

PHP expert for all your applications running

end of life PHP.

Learn more about our PHP LTS options by speaking with a

Zend representative today.

zend.com/services/php-long-term-support

http://zend.com/services/php-long-term-support
http://zend.com/services/php-long-term-support

	Learn More About PHP LTS Options From Zend
	Why Do Teams Want to Build PHP In-House?
	What Does Building PHP Look Like in Practice?
	The Costs of Building PHP In-House
	Learn More About PHP LTS Options From Zend

